Colorimetric Determination of Pb2+ Based on Ionochromic Polydiacetylene/Anionic Surfactant Materials

Article Preview

Abstract:

The purpose of this work was to develop efficient ionochromic polydiacetylenes for lead ion (Pb2+) detection. The method developed used co-assemblies of polydiacetylene and anionic surfactant. The co-assemblies were prepared by mixing 10,12-pentacosadiynoic acid (PCDA) with sodium dodecyl sulphate (SDS) and subsequent UV irradiation-polymerization. The effects of mole ratio of PCDA to SDS, detection limit and stability were investigated. A color transition of poly(PCDA/SDS) co-assemblies with Pb2+ from blue to red was directly observed without the use of any technological equipment. However, Ni2+ and Fe3+ were non-responsive. The co-assemblies of poly(PCDA/SDS) showed rapid ionochromic response and selectivity to Pb2+ in aqueous solution. Based on this approach, the reagent has many advantages such as simple preparation, low cost, low chemical consumption and fast analysis. It is an alternative method for the development if sensing material for the detection of metal ions contaminating the environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-218

Citation:

Online since:

October 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Dasbas, S.Sacmac, A. Ulgen, S. Kartal, A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry, Food Chem. 174 (2015) 591–596.

DOI: 10.1016/j.foodchem.2014.11.049

Google Scholar

[2] X. Zhang, Y. Zhang, D. Ding, J. Zhao , J. Liu, W. Yang, K. Qu, On-site determination of Pb2+ and Cd2+ in seawater by double stripping voltammetry with bismuth-modified working electrodes, Microchem. J. 126 (2016) 280–286.

DOI: 10.1016/j.microc.2015.12.010

Google Scholar

[3] T. Priya, N. Dhanalakshmi, V. Karthikeyan, N. Thinakaran, Highly selective simultaneous trace determination of Cd2+ and Pb2+ using porous graphene/carboxymethyl cellulose/fondaparinux nanocomposite modified electrode, J. Electroanal. Chem. 833 (2019) 543–551.

DOI: 10.1016/j.jelechem.2018.12.039

Google Scholar

[4] C. Kokkinos, A. Economou, N.G. Goddard, P.R. Fielden, S.J. Baldock, Determination of Pb(II) by sequential injection/stripping analysis at all-plastic electrochemical fluidic cells with integrated composite electrodes, Talanta 153 (2016) 170–176.

DOI: 10.1016/j.talanta.2016.03.025

Google Scholar

[5] R.A. Zounr, M. Tuzen, M.Y. Khuhawar, A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry, J. Mol. Liq. 259 (2018) 220–226.

DOI: 10.1016/j.molliq.2018.03.034

Google Scholar

[6] S.L. Zhao, F.S. Chen, J. Zhang, S.B. Ren, H.D. Liang, S.S. Li, On-line flame AAS determination of traces Cd(II) and Pb(II) in water samples using thiol-functionalized SBA-15 as solid phase extractant, J. Ind. Eng. Chem. 27 (2015) 362–367.

DOI: 10.1016/j.jiec.2015.01.015

Google Scholar

[7] J.E. O'Sullivan, R.J. Watson, E.C.V. Butler, An ICP-MS procedure to determine Cd, Co, Cu, Ni, Pb and Zn in oceanic waters using in-line flow-injection with solid-phase extraction for preconcentration, Talanta 115 (2013) 999–1010.

DOI: 10.1016/j.talanta.2013.06.054

Google Scholar

[8] A. Milne, W. Landing, M. Bizimis, P. Morton, Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS), Anal. Chim. Acta 665 (2010) 200–207.

DOI: 10.1016/j.aca.2010.03.027

Google Scholar

[9] Q. Zhu, L. Liu, Y. Xing, X. Zhou, Duplex functional G-quadruplex/NMM fluorescent probe for label-free detection of lead(II) and mercury(II) ions, J. Hazard. Mater. 355 (2018) 50–55.

DOI: 10.1016/j.jhazmat.2018.04.082

Google Scholar

[10] S. Cubuk, N. Tasci, M.V. Kahraman, G. Bayramoglu, E.K. Yetimoglu, Reusable fluorescent photocrosslinked polymeric sensor for determining lead ions in aqueous media, Spectrochim. Acta, Part A 159 (2016) 106–112.

DOI: 10.1016/j.saa.2016.01.050

Google Scholar

[11] W. Cai, S. Xie, J. Zhang, D. Tang, Y. Tang, Immobilized-free miniaturized electrochemical sensing system for Pb2+ detection based on dual Pb2+-DNAzyme assistant feedback amplification strategy, Biosens. Bioelectron. 117 (2018) 312–318.

DOI: 10.1016/j.bios.2018.06.020

Google Scholar

[12] H. Dai, N. Wang, D. Wang, H. Ma, M. Lin, An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II), Chem. Eng. J. 299 (2016) 150–155.

DOI: 10.1016/j.cej.2016.04.083

Google Scholar

[13] M. Wang, F. Wang, Y. Wang, W. Zhang, X. Chen, Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection, Dyes Pigm. 120 (2015) 307–313.

DOI: 10.1016/j.dyepig.2015.04.035

Google Scholar

[14] P. Narkwiboonwong, G. Tumcharern, A. Potisatityuenyong, S. Wacharasindhu and M. Sukwattanasinitt, Aqueous sols of oligo(ethylene glycol) surface decorated polydiacetylene vesicles for colorimetric detection of Pb2+, Talanta 83 (2011) 872–878.

DOI: 10.1016/j.talanta.2010.10.054

Google Scholar

[15] C.G. Lee, S. Kang, J. Oh, M.S. Eom, J. Oh, M.G. Kim, W.S. Lee, S. Hong, M.S. Han, A colorimetric and fluorescent chemosensor for detection of Hg2+ using counterion exchange of cationic polydiacetylene, Tetrahedron Lett. 58 (2017) 4340–4343.

DOI: 10.1016/j.tetlet.2017.09.082

Google Scholar

[16] Y. Li, L. Wang, Y. Wen, B. Ding, G. Sun, T. Ke, J. Chen, J. Yu, Constitution of a visual detection system for lead(II) on polydiacetylene–glycine embedded nanofibrous membranes,| J. Mater. Chem. A 3 (2015) 9722-9730.

DOI: 10.1039/c5ta00608b

Google Scholar

[17] J. Guo, L. Yang, L. Zhu, D. Chen, Selective detection of metal ions based on nanocrystalline ionochromic polydiacetylene, Polymer 54 (2013) 743-749.

DOI: 10.1016/j.polymer.2012.12.009

Google Scholar

[18] K. Hac-Wydro, I. Palasinska, P. Miskowiec, The comparative studies on the ability of anionic surfactants to bind lead(II) ions, J. Mol. Liq. 219 (2016) 1071–1077.

DOI: 10.1016/j.molliq.2016.02.067

Google Scholar

[19] A.R. Burns, R.W. Carpick, D.Y. Sasaki, J.A. Shelnutt, R. Haddad, Shear-induced mechanochromism in polydiacetylene monolayers, Tribol. Lett. 10 (2001) 89-96.

Google Scholar

[20] T. Pattanatornchai, N. Charoenthai, R. Traiphol, Influences of structural mismatch on morphology, phase transition temperature, segmental dynamics and color-transition behaviors of polydiacetylene vesicles, J. Colloid Interface Sci. 432 (2014) 176–181.

DOI: 10.1016/j.jcis.2014.06.047

Google Scholar

[21] N. Traiphol , A. Chanakul, A. Kamphan, R. Traiphol , Role of Zn2+ ion on the formation of reversible thermochromic polydiacetylene/zinc oxide nanocomposites, Thin Solid Films. 622 (2017) 122–129.

DOI: 10.1016/j.tsf.2016.12.037

Google Scholar

[22] S. Wu, L. Pan, Y. Huang, N. Yanga, Q. Zhang, Co-assemblies of polydiacetylenes and metal ions for solvent sensing, Soft Matter, 14 (2018) 6929–6937.

DOI: 10.1039/c8sm01282b

Google Scholar

[23] M. Takeuchi, H. Imai, Y. Oaki, Effects of the intercalation rate on the layered crystal structures and stimuli-responsive color-change properties of polydiacetylene, J. Mater. Chem. C. 5 (2017) 8250–8255.

DOI: 10.1039/c7tc02218b

Google Scholar

[24] C. Ohe, H. Ando, N. Sato, Y. Urai, M. Yamamoto, K. Itoh, Carboxylate−counterion interactions and changes in these interactions during photopolymerization of a long-chain diacetylene monocarboxylic acid at air−water interfaces:  external infrared reflection absorption spectroscopic study, J. Phys. Chem. B. 103 (1999) 435–444.

DOI: 10.1021/jp983669p

Google Scholar