[1]
T. Dasbas, S.Sacmac, A. Ulgen, S. Kartal, A solid phase extraction procedure for the determination of Cd(II) and Pb(II) ions in food and water samples by flame atomic absorption spectrometry, Food Chem. 174 (2015) 591–596.
DOI: 10.1016/j.foodchem.2014.11.049
Google Scholar
[2]
X. Zhang, Y. Zhang, D. Ding, J. Zhao , J. Liu, W. Yang, K. Qu, On-site determination of Pb2+ and Cd2+ in seawater by double stripping voltammetry with bismuth-modified working electrodes, Microchem. J. 126 (2016) 280–286.
DOI: 10.1016/j.microc.2015.12.010
Google Scholar
[3]
T. Priya, N. Dhanalakshmi, V. Karthikeyan, N. Thinakaran, Highly selective simultaneous trace determination of Cd2+ and Pb2+ using porous graphene/carboxymethyl cellulose/fondaparinux nanocomposite modified electrode, J. Electroanal. Chem. 833 (2019) 543–551.
DOI: 10.1016/j.jelechem.2018.12.039
Google Scholar
[4]
C. Kokkinos, A. Economou, N.G. Goddard, P.R. Fielden, S.J. Baldock, Determination of Pb(II) by sequential injection/stripping analysis at all-plastic electrochemical fluidic cells with integrated composite electrodes, Talanta 153 (2016) 170–176.
DOI: 10.1016/j.talanta.2016.03.025
Google Scholar
[5]
R.A. Zounr, M. Tuzen, M.Y. Khuhawar, A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry, J. Mol. Liq. 259 (2018) 220–226.
DOI: 10.1016/j.molliq.2018.03.034
Google Scholar
[6]
S.L. Zhao, F.S. Chen, J. Zhang, S.B. Ren, H.D. Liang, S.S. Li, On-line flame AAS determination of traces Cd(II) and Pb(II) in water samples using thiol-functionalized SBA-15 as solid phase extractant, J. Ind. Eng. Chem. 27 (2015) 362–367.
DOI: 10.1016/j.jiec.2015.01.015
Google Scholar
[7]
J.E. O'Sullivan, R.J. Watson, E.C.V. Butler, An ICP-MS procedure to determine Cd, Co, Cu, Ni, Pb and Zn in oceanic waters using in-line flow-injection with solid-phase extraction for preconcentration, Talanta 115 (2013) 999–1010.
DOI: 10.1016/j.talanta.2013.06.054
Google Scholar
[8]
A. Milne, W. Landing, M. Bizimis, P. Morton, Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS), Anal. Chim. Acta 665 (2010) 200–207.
DOI: 10.1016/j.aca.2010.03.027
Google Scholar
[9]
Q. Zhu, L. Liu, Y. Xing, X. Zhou, Duplex functional G-quadruplex/NMM fluorescent probe for label-free detection of lead(II) and mercury(II) ions, J. Hazard. Mater. 355 (2018) 50–55.
DOI: 10.1016/j.jhazmat.2018.04.082
Google Scholar
[10]
S. Cubuk, N. Tasci, M.V. Kahraman, G. Bayramoglu, E.K. Yetimoglu, Reusable fluorescent photocrosslinked polymeric sensor for determining lead ions in aqueous media, Spectrochim. Acta, Part A 159 (2016) 106–112.
DOI: 10.1016/j.saa.2016.01.050
Google Scholar
[11]
W. Cai, S. Xie, J. Zhang, D. Tang, Y. Tang, Immobilized-free miniaturized electrochemical sensing system for Pb2+ detection based on dual Pb2+-DNAzyme assistant feedback amplification strategy, Biosens. Bioelectron. 117 (2018) 312–318.
DOI: 10.1016/j.bios.2018.06.020
Google Scholar
[12]
H. Dai, N. Wang, D. Wang, H. Ma, M. Lin, An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II), Chem. Eng. J. 299 (2016) 150–155.
DOI: 10.1016/j.cej.2016.04.083
Google Scholar
[13]
M. Wang, F. Wang, Y. Wang, W. Zhang, X. Chen, Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection, Dyes Pigm. 120 (2015) 307–313.
DOI: 10.1016/j.dyepig.2015.04.035
Google Scholar
[14]
P. Narkwiboonwong, G. Tumcharern, A. Potisatityuenyong, S. Wacharasindhu and M. Sukwattanasinitt, Aqueous sols of oligo(ethylene glycol) surface decorated polydiacetylene vesicles for colorimetric detection of Pb2+, Talanta 83 (2011) 872–878.
DOI: 10.1016/j.talanta.2010.10.054
Google Scholar
[15]
C.G. Lee, S. Kang, J. Oh, M.S. Eom, J. Oh, M.G. Kim, W.S. Lee, S. Hong, M.S. Han, A colorimetric and fluorescent chemosensor for detection of Hg2+ using counterion exchange of cationic polydiacetylene, Tetrahedron Lett. 58 (2017) 4340–4343.
DOI: 10.1016/j.tetlet.2017.09.082
Google Scholar
[16]
Y. Li, L. Wang, Y. Wen, B. Ding, G. Sun, T. Ke, J. Chen, J. Yu, Constitution of a visual detection system for lead(II) on polydiacetylene–glycine embedded nanofibrous membranes,| J. Mater. Chem. A 3 (2015) 9722-9730.
DOI: 10.1039/c5ta00608b
Google Scholar
[17]
J. Guo, L. Yang, L. Zhu, D. Chen, Selective detection of metal ions based on nanocrystalline ionochromic polydiacetylene, Polymer 54 (2013) 743-749.
DOI: 10.1016/j.polymer.2012.12.009
Google Scholar
[18]
K. Hac-Wydro, I. Palasinska, P. Miskowiec, The comparative studies on the ability of anionic surfactants to bind lead(II) ions, J. Mol. Liq. 219 (2016) 1071–1077.
DOI: 10.1016/j.molliq.2016.02.067
Google Scholar
[19]
A.R. Burns, R.W. Carpick, D.Y. Sasaki, J.A. Shelnutt, R. Haddad, Shear-induced mechanochromism in polydiacetylene monolayers, Tribol. Lett. 10 (2001) 89-96.
Google Scholar
[20]
T. Pattanatornchai, N. Charoenthai, R. Traiphol, Influences of structural mismatch on morphology, phase transition temperature, segmental dynamics and color-transition behaviors of polydiacetylene vesicles, J. Colloid Interface Sci. 432 (2014) 176–181.
DOI: 10.1016/j.jcis.2014.06.047
Google Scholar
[21]
N. Traiphol , A. Chanakul, A. Kamphan, R. Traiphol , Role of Zn2+ ion on the formation of reversible thermochromic polydiacetylene/zinc oxide nanocomposites, Thin Solid Films. 622 (2017) 122–129.
DOI: 10.1016/j.tsf.2016.12.037
Google Scholar
[22]
S. Wu, L. Pan, Y. Huang, N. Yanga, Q. Zhang, Co-assemblies of polydiacetylenes and metal ions for solvent sensing, Soft Matter, 14 (2018) 6929–6937.
DOI: 10.1039/c8sm01282b
Google Scholar
[23]
M. Takeuchi, H. Imai, Y. Oaki, Effects of the intercalation rate on the layered crystal structures and stimuli-responsive color-change properties of polydiacetylene, J. Mater. Chem. C. 5 (2017) 8250–8255.
DOI: 10.1039/c7tc02218b
Google Scholar
[24]
C. Ohe, H. Ando, N. Sato, Y. Urai, M. Yamamoto, K. Itoh, Carboxylate−counterion interactions and changes in these interactions during photopolymerization of a long-chain diacetylene monocarboxylic acid at air−water interfaces: external infrared reflection absorption spectroscopic study, J. Phys. Chem. B. 103 (1999) 435–444.
DOI: 10.1021/jp983669p
Google Scholar