[1]
D. Laubitz, F.K. Ghishan, P.R. Kiela, Sodium: Basic Nutritional Aspects, in: J. Collins (Ed.), Molecular, Genetic, and Nutritional Aspects of Major and Trace Minerals, Academic Press, Boston, 2017, pp.489-501.
DOI: 10.1016/b978-0-12-802168-2.00040-3
Google Scholar
[2]
M. Singh, S. Chandorkar, Is sodium and potassium content of commonly consumed processed packaged foods a cause of concern?, Food Chem. 238 (2018) 117-124.
DOI: 10.1016/j.foodchem.2016.11.108
Google Scholar
[3]
G. Kaur, N. Kaur, Estimation of sodium ions using easily engineered organic nanoparticles-based turn-on fluorescent sensor: Application in biological and environmental samples. Sens Actuators B Chem. 265 (2018) 134-141.
DOI: 10.1016/j.snb.2018.02.063
Google Scholar
[4]
G. Lindner, G.C. Funk, Hypernatremia in critically ill patients. J Crit Care. 28 (2013) 216.e11-216.e20.
DOI: 10.1016/j.jcrc.2012.05.001
Google Scholar
[5]
S.A. Muhsin, D.B. Mount, Diagnosis and treatment of hypernatremia, Best Pract Res Clin Endocrinol Metab. 30 (2016) 189-203.
Google Scholar
[6]
M. Terris, P. Crean, Fluid and electrolyte balance in children, Anaesth Intensive Care. 18 (2017) 567-571.
DOI: 10.1016/j.mpaic.2017.07.009
Google Scholar
[7]
B. Paull, P.N. Nesterenko, Ion Chromatography, in: S. Fanali, P.R. Haddad, C.F. Poole, P. Schoenmakers, D. Lloyd (Eds), Liquid Chromatography, second ed., Elsevier, Amsterdam, 2013, pp.157-191.
DOI: 10.1016/b978-0-12-415807-8.00008-0
Google Scholar
[8]
D. Beauchemin, Inductively Coupled Plasma Mass Spectrometry Methods, in: J.C. Lindon, G.E. Tranter, D.W. Koppenaal (Eds), Encyclopedia of Spectroscopy and Spectrometry, third ed., Academic Press, Oxford, 2017, pp.236-245.
DOI: 10.1016/b978-0-12-409547-2.11222-3
Google Scholar
[9]
F.S. Diba, H.J. Lee, Amperometric sensing of sodium, calcium and potassium in biological fluids using a microhole supported liquid/gel interface, J. Electroanal. Chem. 769 (2016) 5-10.
DOI: 10.1016/j.jelechem.2016.02.045
Google Scholar
[10]
D.W. Kwon, S. Kim, R. Lee, H.S. Mo, D.H. Kim, B.G. Park, Macro modeling of ion sensitive field effect transistor with current drift. Sens Actuators B Chem. 249 (2017) 564-570.
DOI: 10.1016/j.snb.2017.03.110
Google Scholar
[11]
J. Artigas, C. Jiménez, C. Domı́nguez, S. Mı́nguez, A. Gonzalo, J. Alonso, Development of a multiparametric analyser based on ISFET sensors applied to process control in the wine industry. Sens Actuators B Chem. 89 (2003) 199-204.
DOI: 10.1016/s0925-4005(02)00464-1
Google Scholar
[12]
R. Mlika, M. Gamoudi, G. Guillaud, M. Charbonnier, M. Romand, J. Davenas, N. Jaffrezic-Renault, R. Lamartine, A. Touhami, Calix[4]arene sensitive thin films for detecting sodium. Surface studies. Mater. Sci. Eng. C. 11 (2000) 129-136.
DOI: 10.1016/s0928-4931(00)00194-6
Google Scholar
[13]
F. Sauvage, E. Baudrin, J.M. Tarascon, Study of the potentiometric response towards sodium ions of Na0.44−xMnO2 for the development of selective sodium ion sensors. Sens Actuators B Chem. 120 (2007) 638-644.
DOI: 10.1016/j.snb.2006.03.024
Google Scholar
[14]
ACazalé, W. Sant, F. Ginot, J.C. Launay, G. Savourey, F. Revol-Cavalier, J.M. Lagarde, D. Heinry, J. Launay, P. Temple-Boyer, Physiological stress monitoring using sodium ion potentiometric microsensors for sweat analysis. Sens Actuators B Chem. 225 (2016) 1-9.
DOI: 10.1016/j.snb.2015.10.114
Google Scholar
[15]
A. Cazalé, W. Sant, J. Launay, F. Ginot, P. Temple-Boyer, Study of field effect transistors for the sodium ion detection using fluoropolysiloxane-based sensitive layers, Sens Actuators B Chem. 177 (2013) 515-521.
DOI: 10.1016/j.snb.2012.11.054
Google Scholar
[16]
X. Zhang, A. Fakler, U.E. Spichiger, Design of pH microelectrodes based on ETHT 2418 and their application for measurement of pH profile in instant noodles, Anal. Chim. Acta 445 (2001) 57-65.
DOI: 10.1016/s0003-2670(01)01252-1
Google Scholar