Photoelectrocatalytic Degradation of C.I. Basic Blue 9 under UV Light Using Silver-Doped Titanium Dioxide Nanotubes

Article Preview

Abstract:

Titanium dioxide is a widely-investigated semiconductor photocatalyst due to its wide availability and low cost. Although it has been successfully used in the photocatalytic treatment of various organics in wastewater, it remains a challenge to modify its structure to achieve enhanced catalytic properties at a wider light spectrum. Doping with transition metals was seen to narrow its optical band gap yet synthesis routes have been largely limited to the use of high-end equipment. Herein we demonstrate the use of a simpler one-pot approach to synthesize nanoporous arrays of silver-doped titanium dioxide nanotubes (Ag-TiNTs) by double anodization of titanium sheets. The synthesized Ag-TiNTs have an average inner diameter of 58.68 nm and a wall thickness of 16.46 nm. ATR-FTIR spectroscopy revealed its characteristic peaks attributed to O-Ti-O bonds. Silver doping increased the lattice volume and crystallite size of anatase with a corresponding decrease in the degree of crystallinity due to the introduction of impurity Ag atoms in its tetragonal structure. Silver was homogeneously distributed across the nanotube surface at an average loading of 1.41 at. %. The synthesized Ag-TiNTs were shown to have a superior photoelectrocatalytic activity in degrading C.I. Basic Blue 9 under UV illumination with a pseudo-first-order kinetic rate of 1.0253 x 10-2 min-1. Most importantly, the Ag-TiNTs are photoelectrocatalytically-active even at a low Ag loading.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

132-141

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Renz, Light reactions of the oxides of titanium, cerium and the earth acids, Helv. Chim. Acta. 4 (1921) 961–968.

Google Scholar

[2] C.F. Goodeve, J.A. Kitchener, Photosensitisation by titanium dioxide, Trans. Faraday Soc. 34 (1938) 570–579.

DOI: 10.1039/tf9383400570

Google Scholar

[3] V.D. Binas, K. Sambani, T. Maggos, A. Katsanaki, G. Kiriakidis, Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light, Appl. Catal. B Environ. 113–114 (2012) 79–86.

DOI: 10.1016/j.apcatb.2011.11.021

Google Scholar

[4] J.C. Lin, K. Sopajaree, T. Jitjanesuwan, M. Lu, Application of visible light on copper-doped titanium dioxide catalyzing degradation of chlorophenols, Sep. Purif. Technol. 191 (2018) 233–243.

DOI: 10.1016/j.seppur.2017.09.027

Google Scholar

[5] P. Singla, O.P. Pandey, K. Singh, Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles, Int. J. Environ. Sci. Technol. 13 (2016) 849–856.

DOI: 10.1007/s13762-015-0909-8

Google Scholar

[6] Y. Matsumoto, M. Katayama, T. Abe, T. Ohsawa, I. Ohkubo, H. Kumigashira, M. Oshima, H. Koinuma, Chemical trend of Fermi-level shift in transition metal-doped TiO2 films, J. Ceram. Soc. Japan. 2 (2010) 993–996.

DOI: 10.2109/jcersj2.118.993

Google Scholar

[7] F. Huang, A. Yan, H. Zhao, Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst, in: Semicond. Photocatal. - Mater. Mech. Appl., InTech, 2013: p.75–100.

Google Scholar

[8] N. Nishiyama, Y. Fujiwara, K. Adachi, K. Inumaru, S. Yamazaki, Preparation of porous metal-ion-doped titanium dioxide and the photocatalytic degradation of 4-chlorophenol under visible light irradiation, Appl. Catal. B Environ. 176–177 (2015) 347–353.

DOI: 10.1016/j.apcatb.2015.04.015

Google Scholar

[9] G. Li, A. Bono, D. Krishnaiah, J.G. Collin, Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition : A review paper, J. Hazard. Mater. 157 (2008) 209–219.

DOI: 10.1016/j.jhazmat.2008.01.040

Google Scholar

[10] N. Liu, X. Chen, J. Zhang, J.W. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications, Catal. Today. 225 (2014) 34–51.

DOI: 10.1016/j.cattod.2013.10.090

Google Scholar

[11] P. Gross, S.N. Pronkin, T. Cottineau, B. Nicolas, N. Keller, E.R. Savinova, One step synthesis of niobium doped titania nanotube arrays to form (N, Nb) co-doped TiO2 with high visible light photoelectrochemical activity, J. Mater. Chem. A Mater. Energy Sustain. (2013) 2151–2160.

DOI: 10.1039/c2ta00922f

Google Scholar

[12] Z.B. Xie, D.J. Blackwood, Effects of anodization parameters on the formation of titania nanotubes in ethylene glycol, Electrochim. Acta. 56 (2010) 905–912.

DOI: 10.1016/j.electacta.2010.10.004

Google Scholar

[13] J.V. Pasikhani, N. Gilani, A.E. Pirbazari, The effect of the anodization voltage on the geometrical characteristics and photocatalytic activity of TiO2 nanotube arrays, Nano-Structures and Nano-Objects. 8 (2016) 7–14.

DOI: 10.1016/j.nanoso.2016.09.001

Google Scholar

[14] T. Hoseinzadeh, Z. Ghorannevis, M. Ghoranneviss, A.H. Sari, M.K. Salem, Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method, J. Theor. Appl. Phys. 11 (2017) 243–248.

DOI: 10.1007/s40094-017-0257-9

Google Scholar

[15] J. Chen, H. Wang, X. Wei, L. Zhu, Characterization, properties and catalytic application of TiO2 nanotubes prepared by ultrasonic-assisted sol-hydrothermal method, Mater. Res. Bull. 47 (2012) 3747–3752.

DOI: 10.1016/j.materresbull.2012.06.029

Google Scholar

[16] T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films, Sci. Rep. 4 (2015) 1–8.

DOI: 10.1038/srep04043

Google Scholar

[17] S.I. Mogal, V.G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P.A. Joshi, D.O. Shah, Single-step synthesis of silver-doped titanium dioxide: Influence of silver on structural, textural, and photocatalytic properties, Ind. Eng. Chem. Res. 53 (2014) 5749–5758.

DOI: 10.1021/ie404230q

Google Scholar

[18] A. Burns, G. Hayes, W. Li, J. Hirvonen, J.D. Demaree, S.I. Shah, Neodymium ion dopant effects on the phase transformation in sol-gel derived titania nanostructures, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 111 (2004) 150–155.

DOI: 10.1016/j.mseb.2004.04.008

Google Scholar

[19] Y.L. Pang, S. Lim, H.C. Ong, W.T. Chong, A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts, Appl. Catal. A Gen. 481 (2014) 127–142.

DOI: 10.1016/j.apcata.2014.05.007

Google Scholar

[20] S. Muniyappan, T. Solaiyammal, K. Sudhakar, A. Karthigeyan, P. Murugakoothan, Conventional hydrothermal synthesis of titanate nanotubes: Systematic discussions on structural, optical, thermal and morphological properties, Mod. Electron. Mater. 3 (2017) 174–178.

DOI: 10.1016/j.moem.2017.10.002

Google Scholar

[21] L. Cui, K.N. Hui, K.S. Hui, S.K. Lee, W. Zhou, Z.P. Wan, C.N.H. Thuc, Facile microwave-assisted hydrothermal synthesis of TiO2 nanotubes, Mater. Lett. 75 (2012) 175–178.

DOI: 10.1016/j.matlet.2012.02.004

Google Scholar

[22] B. Liu, X. Zhao, C. Terashima, A. Fujishima, K. Nakata, Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems, Phys. Chem. Chem. Phys. 16 (2014) 8751.

DOI: 10.1039/c3cp55317e

Google Scholar

[23] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal. B Environ. 31 (2001) 145–157.

DOI: 10.1016/s0926-3373(00)00276-9

Google Scholar

[24] P. Roy, S. Berger, P. Schmuki, TiO2 Nanotubes: Synthesis and applications, Angew. Chemie. 50 (2011) 2904–2939.

DOI: 10.1002/anie.201001374

Google Scholar

[25] S. Kment, H. Kmentova, P. Kluson, J. Krysa, Z. Hubicka, V. Cirkva, I. Gregora, O. Solcova, L. Jastrabik, Notes on the photo-induced characteristics of transition metal-doped and undoped titanium dioxide thin films, J. Colloid Interface Sci. 348 (2010) 198–205.

DOI: 10.1016/j.jcis.2010.04.002

Google Scholar

[26] D. Cao, Y. Wang, X. Zhao, Combination of photocatalytic and electrochemical degradation of organic pollutants from water, Curr. Opin. Green Sustain. Chem. 6 (2017) 78–84.

Google Scholar