The Effect of Carbon Black on Electrical, Thermal-Oxidative Stability, and Structural Properties of Polypropylene/Clay Nanocomposite

Article Preview

Abstract:

An effort to improve electrical property of Polypropylene (PP)/Clay nanocomposite was conducted. Carbon black (CB) was introduced into PP/Clay to enhance that property as required for conductive polymer composites (CPCs) application. The compositions of CB on PP/Clay were varied at 3, 5, and 7 percent hundred resin (phr). In this research, all composites were prepared by melt mixing using an internal mixer at 222 °C, 83 rpm, and 10 minutes. A compatibilizer, PP-grafted-Maleic Anhydride (PP-g-MA), was used to facilitate dispersion of clay layers and CB particles on PP matrix. The electrical property of composite was evaluated from their surface resistivity using insulation tester. Meantime thermal-oxidative stability property was analyzed from oxidative induction time (OIT) data using Differential Scanning Calorimetry (DSC) instrument. The presence of CB dramatically decreased surface resistivity of PP/Clay from 6.98 x 1013 ohm to 7.35 x 106 ohm by adding CB 7 phr. OIT of PP/Clay dropped 155% compare with neat PP. On the other hand, the addition of CB 7 phr into PP/Clay improved OIT of PP/Clay up to 22 %. The interlayer structure of clay was investigated using X-ray Diffraction (XRD) to find out the synergistic effect between clay and CB. Actually, clay interlayer spacing did not change due to the addition of CB.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-155

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.K. Sharma, S.K. Nayak, Surface modified clay/polypropylene (PP) nanocomposites: effect on physico-mechanical, thermal and morphological properties, Polym. Degrad. Stab. 94(1) (2009) 132-138.

DOI: 10.1016/j.polymdegradstab.2008.09.004

Google Scholar

[2] M.H. Gabr, W. Okumura, H. Ueda, W. Kuriyama, K. Uzawa, Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay, Compos. Part B Eng. 69 (2015) 94-100.

DOI: 10.1016/j.compositesb.2014.09.033

Google Scholar

[3] Zaiby, A.S. Yogi, L.J. Ariadne, U. Onny, Polypropylene/clay nanocomposites prepared in an internal mixer: optimization of processing conditions to improve flexural modulus, IOP Conf. Ser.: Mater. Sci. Eng. 432 (2018).

DOI: 10.1088/1757-899x/432/1/012014

Google Scholar

[4] M.H. Al-Saleh, Clay/carbon nanotube hybrid mixture to reduce the electrical percolation threshold of polymer nanocomposites, Compos. Sci. Technol. 149 (2017) 34-40.

DOI: 10.1016/j.compscitech.2017.06.009

Google Scholar

[5] L. Liu, J.C. Grunlan, Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites, Adv. Funct. Mater. 17(14) (2007) 2343-2348.

DOI: 10.1002/adfm.200600785

Google Scholar

[6] S.P. Bao, G.D. Liang, S.C. Tjong, Positive temperature coefficient effect of Polypropylene/CarbonNanotube/Montmorillonite hybrid nanocomposites, IEEE Trans. Nanotechnol. 8(6) (2009) 729-736.

DOI: 10.1109/tnano.2009.2023650

Google Scholar

[7] L.B. Fitaroni, J.A. De Lima, S.A. Cruz, W.R. Waldman, Thermal stability of polypropylene/montmorillonite clay nanocomposites: Limitation of the thermogravimetric analysis, Polym. Degrad. Stab. 111 (2015) 102-108.

DOI: 10.1016/j.polymdegradstab.2014.10.016

Google Scholar

[8] J. Chen, X. Cui, K. Sui, Y. Zhu, W. Jiang, Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure, Compos. Sci. Technol. 140 (2017) 99-105.

DOI: 10.1016/j.compscitech.2016.12.029

Google Scholar

[9] H. Yang, J. Gong, X. Wen, J. Xue, Q. Chen, Z. Jianget al. Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites, Compos. Sci. Technol.113 (2015) 31-37.

DOI: 10.1016/j.compscitech.2015.03.013

Google Scholar

[10] T. Gong, S.P. Peng, R.Y. Bao, W. Yang, B.H. Xie, M.B. Yang, Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure, Compos. Part B: Eng.99 (2016) 348-357.

DOI: 10.1016/j.compositesb.2016.06.031

Google Scholar

[11] X. Wen, Y. Wang, J. Gong, J. Liu, N. Tian, Y. Wang et al. Thermal and flammability properties of polypropylene/carbon black nanocomposites, Polym. Degrad. Stab. 97(5) (2012) 793-801.

DOI: 10.1016/j.polymdegradstab.2012.01.031

Google Scholar

[12] W. Lertwimolnun,B. Vergnes, Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix, Polym. 46(10) (2005) 3462-3471.

DOI: 10.1016/j.polymer.2005.02.018

Google Scholar

[13] H. Kubisova, D. Merinska, P. Svoboda, PP/clay nanocomposite: optimization of mixing conditions with respect to mechanical properties, Polym. Bull. 65(5) (2010) 533-541.

DOI: 10.1007/s00289-010-0269-y

Google Scholar

[14] D.G. Lopez, O. Picazo, J.C. Merino, J.M. Pastor, Polypropylene–clay nanocomposites: effect of compatibilizing agents on clay dispersion, Eur. Polym. J. 39(5) (2003) 945-950.

DOI: 10.1016/s0014-3057(02)00333-6

Google Scholar

[15] Z. Stary, J. Kruckel, Conductive polymer composites with carbonic fillers: Shear induced electrical behavior, Polym. 139 (2018) 52-59.

DOI: 10.1016/j.polymer.2018.02.008

Google Scholar

[16] J.M Pena, N.S. Allen, M. Edge, C.M. Liauw, B. Valange, Interactions between carbon black and stabilisers in LDPE thermal oxidation,Polym. Degrad. Stab.72(1) (2001) 163-174.

DOI: 10.1016/s0141-3910(01)00016-7

Google Scholar

[17] M. Ataeefard,S. Moradian, Polypropylene/Organoclay nanocomposites: effects of clay content on properties, Polym. Plast. Technol. Eng.50(7) (2011) 732-739.

DOI: 10.1080/03602559.2010.551438

Google Scholar