Humic Acid Functionalized - Silver Nanoparticles as Nanosensor for Colorimetric Detection of Copper (II) Ions in Aqueous Solutions

Article Preview

Abstract:

Humic acid - functionalized silver nanoparticles (HA-AgNPs) were successfully synthesized and used to detect Cu (II) ions in aqueous solutions. The HA-AgNPs was shown to have an average hydrodynamic diameter of 101.4 nm and a polydispersity index of 0.447. The absorbance spectra of HA-AgNPs showed the characteristic local surface plasmon resonance (LSPR) peak of AgNPs at 408.3 nm. Addition of Cu (II) in the HA-AgNPs led to their agglomeration as evidenced by the change in their surface morphology and their corresponding optical absorbance spectra. The synthesized HA-AgNPs showed a strong linear response for Cu (II) concentrations in the range of 0.00 – 1.25 mM with a limit of detection (LoD) of 4.4428 ± 0.1091 mg L-1, a limit of quantification (LoQ) of 14.8094 ± 0.3636 mg L-1, and a limit of blank (LoB) of 0.1214 ± 0.0065 mg L-1. Statistical analysis showed that this calibration curve could be used to quantify Cu (II) concentrations within a 95% confidence level. Furthermore, HA-AgNPs was found to be selective for Cu (II) detection based on the selectivity study against common metal ions found in drinking water. This shows that the synthesized HA-AgNPs can be used as an environment-friendly colorimetric nanosensor for rapid and point-of-need quantification of Cu (II) ions in aqueous media.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-150

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] National Research Council, Copper in Drinking Water, (2000).

Google Scholar

[2] W.S. Zhong, T. Ren, L.J. Zhao, Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry, J. Food Drug Anal. 24 (2016) 46–55.

DOI: 10.1016/j.jfda.2015.04.010

Google Scholar

[3] O. Acar, Determination of cadmium, copper and lead in soils, sediments and sea water samples by ETAAS using a Sc + Pd + NH4NO3 chemical modifier, Talanta. 65 (2005) 672–677.

DOI: 10.1016/j.talanta.2004.07.035

Google Scholar

[4] A.B.M. Helaluddin, R.S. Khalid, M. Alaama, S.A. Abbas, Main analytical techniques used for elemental analysis in various matrices, Trop. J. Pharm. Res. 15 (2016) 427–434.

DOI: 10.4314/tjpr.v15i2.29

Google Scholar

[5] J.F. Huang, B.T. Lin, Application of a nanoporous gold electrode for the sensitive detection of copper via mercury-free anodic stripping voltammetry, Analyst. 134 (2009) 2306–2313.

DOI: 10.1039/b910282e

Google Scholar

[6] M. Sun, Z. Li, S. Wu, Y. Gu, Y. Li, Simultaneous detection of Pb2+, Cu2+ and Hg2+ by differential pulse voltammetry at an indium tin oxide glass electrode modified by hydroxyapatite, Electrochim. Acta. 283 (2018) 1223–1230.

DOI: 10.1016/j.electacta.2018.07.019

Google Scholar

[7] S. Unser, I. Bruzas, J. He, L. Sagle, Localized surface plasmon resonance biosensing: Current challenges and approaches, Sensors. 15 (2015) 15684–15716.

DOI: 10.3390/s150715684

Google Scholar

[8] M. Mahmoudpour, J. Ezzati Nazhad Dolatabadi, M. Torbati, A. Homayouni-Rad, Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions, Biosens. Bioelectron. 127 (2019) 72–84.

DOI: 10.1016/j.bios.2018.12.023

Google Scholar

[9] S. Jongjinakool, K. Palasak, N. Bousod, S. Teepoo, Gold nanoparticles-based colorimetric sensor for cysteine detection, Energy Procedia. 56 (2014) 10–18.

DOI: 10.1016/j.egypro.2014.07.126

Google Scholar

[10] X. Li, H. Cui, Z. Zeng, A Simple Colorimetric and Fluorescent Sensor to Detect Organophosphate Pesticides Based on Adenosine Triphosphate-Modified Gold Nanoparticles, Sensors. 18 (2018) 4302.

DOI: 10.3390/s18124302

Google Scholar

[11] F. Ghasemi, M.R. Hormozi-Nezhad, M. Mahmoudi, A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles, Anal. Chim. Acta. 882 (2015) 58–67.

DOI: 10.1016/j.aca.2015.04.011

Google Scholar

[12] F. Salimi, M. Kiani, C. Karami, M.A. Taher, Colorimetric sensor of detection of Cr (III) and Fe (II) ions in aqueous solutions using gold nanoparticles modified with methylene blue, Optik (Stuttg). 158 (2018) 813–825.

DOI: 10.1016/j.ijleo.2018.01.006

Google Scholar

[13] W. Chen, X. Tu, X. Guo, Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions, Chem. Commun. (2009) 1736–1738.

DOI: 10.1039/b820145e

Google Scholar

[14] Y. Xie, Colorimetric determination of Hg(II) via the gold amalgam induced deaggregation of gold nanoparticles, Microchim. Acta. 185 (2018) 1–6.

DOI: 10.1007/s00604-018-2900-9

Google Scholar

[15] A. Devadiga, K. Vidya Shetty, M.B. Saidutta, Highly stable silver nanoparticles synthesized using Terminalia catappa leaves as antibacterial agent and colorimetric mercury sensor, Mater. Lett. 207 (2017) 66–71.

DOI: 10.1016/j.matlet.2017.07.024

Google Scholar

[16] T. Sharif, A. Niaz, M. Najeeb, M.I. Zaman, M. Ihsan, Sirajuddin, Isonicotinic acid hydrazide-based silver nanoparticles as simple colorimetric sensor for the detection of Cr3+, Sensors Actuators, B Chem. 216 (2015) 402–408.

DOI: 10.1016/j.snb.2015.04.043

Google Scholar

[17] Y. He, X. Zhang, Ultrasensitive colorimetric detection of manganese(II) ions based on anti-aggregation of unmodified silver nanoparticles, Sensors Actuators, B Chem. 222 (2016) 320–324.

DOI: 10.1016/j.snb.2015.08.089

Google Scholar

[18] V. Vinod Kumar, S.P. Anthony, Silver nanoparticles based selective colorimetric sensor for Cd2+, Hg2+ and Pb2+ ions: Tuning sensitivity and selectivity using co-stabilizing agents, Sensors Actuators, B Chem. 191 (2014) 31–36.

DOI: 10.1016/j.snb.2013.09.089

Google Scholar

[19] S.L. Smitha, K.M. Nissamudeen, D. Philip, K.G. Gopchandran, Studies on surface plasmon resonance and photoluminescence of silver nanoparticles, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 71 (2008) 186–190.

DOI: 10.1016/j.saa.2007.12.002

Google Scholar

[20] F.A. McClary, S. Gaye-Campbell, A.Y. Hai Ting, J.W. Mitchell, Enhanced localized surface plasmon resonance dependence of silver nanoparticles on the stoichiometric ratio of citrate stabilizers, J. Nanoparticle Res. 15 (2013).

DOI: 10.1007/s11051-013-1442-7

Google Scholar

[21] V.N. Mehta, J. V. Rohit, S.K. Kailasa, Functionalization of silver nanoparticles with 5-sulfoanthranilic acid dithiocarbamate for selective colorimetric detection of Mn2+ and Cd2+ ions, New J. Chem. 40 (2016) 4566–4574.

DOI: 10.1039/c5nj03454j

Google Scholar

[22] P.R. Cáceres-Vélez, M.L. Fascineli, M.H. Sousa, C.K. Grisolia, L. Yate, P.E.N. de Souza, I. Estrela-Lopis, S. Moya, R.B. Azevedo, Humic acid attenuation of silver nanoparticle toxicity by ion complexation and the formation of a Ag3+ coating, J. Hazard. Mater. 353 (2018) 173–181.

DOI: 10.1016/j.jhazmat.2018.04.019

Google Scholar

[23] S.T. Dubas, V. Pimpan, Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection, Mater. Lett. 62 (2008) 2661–2663.

DOI: 10.1016/j.matlet.2008.01.033

Google Scholar

[24] N.L. Pacioni, C.D. Borsarelli, V. Rey, A. V Veglia, Synthetic Routes for the Preparation of Silver Nanoparticles, in: Silver Nanoparticle Appl. Fabr. Des. Med. Biosensing Devices, 2015: p.13–44.

DOI: 10.1007/978-3-319-11262-6_2

Google Scholar

[25] International Organization for Standardization, Particle size analysis — Dynamic light scattering (DLS), (2017) 1–33.

Google Scholar

[26] B.A.G. De Melo, F.L. Motta, M.H.A. Santana, Humic acids: Structural properties and multiple functionalities for novel technological developments, Mater. Sci. Eng. C. 62 (2016) 967–974.

DOI: 10.1016/j.msec.2015.12.001

Google Scholar

[27] R. Ma, C. Levard, S.M. Marinakos, Y. Cheng, J. Liu, F.M. Michel, G.E. Brown, G. V. Lowry, Size-controlled dissolution of organic-coated silver nanoparticles, Environ. Sci. Technol. 46 (2012) 752–759.

DOI: 10.1021/es201686j

Google Scholar

[28] L. Huang, M.L. Zhai, D.W. Long, J. Peng, L. Xu, G.Z. Wu, J.Q. Li, G.S. Wei, UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution, J. Nanoparticle Res. 10 (2008) 1193–1202.

DOI: 10.1007/s11051-007-9353-0

Google Scholar

[29] N. Agasti, V.K. Singh, N.K. Kaushik, Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction, Mater. Res. Bull. 64 (2015) 17–21.

DOI: 10.1016/j.materresbull.2014.12.030

Google Scholar

[30] D. Vilela, M.C. González, A. Escarpa, Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review, Anal. Chim. Acta. 751 (2012) 24–43.

DOI: 10.1016/j.aca.2012.08.043

Google Scholar

[31] V. Manoharan, A. Ravindran, C.H. Anjali, Mechanistic Insights into Interaction of Humic Acid with Silver Nanoparticles, Cell Biochem. Biophys. 68 (2014) 127–131.

DOI: 10.1007/s12013-013-9699-0

Google Scholar

[32] K.M. Spark, J.D. Wells, B.B. Johnson, The interaction of a humic acid with heavy metals, Aust. J. Soil Res. 35 (1997) 89–101.

DOI: 10.1071/s96008

Google Scholar

[33] W.W. Tang, G.M. Zeng, J.L. Gong, J. Liang, P. Xu, C. Zhang, B. Bin Huang, Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review, Sci. Total Environ. 468–469 (2014) 1014–1027.

DOI: 10.1016/j.scitotenv.2013.09.044

Google Scholar

[34] P.K. Jain, M.A. El-Sayed, Plasmonic coupling in noble metal nanostructures, Chem. Phys. Lett. 487 (2010) 153–164.

DOI: 10.1016/j.cplett.2010.01.062

Google Scholar

[35] P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Plasmon Hybrid Nanoparticle Dimers, Nano Lett. 4 (2004) 899–903.

DOI: 10.1021/nl049681c

Google Scholar

[36] G. Mie, Contributions to the optics of turbid media, especially of colloidal gold solutions, Ann. Phys. (1908).

Google Scholar

[37] World Health Organization, Guidelines for Drinking-water Quality, (2006).

Google Scholar

[38] E. Detsri, Novel colorimetric sensor for mercury (II) based on layer-by-layer assembly of unmodified silver triangular nanoplates, Chinese Chem. Lett. 27 (2016) 1635–1640.

DOI: 10.1016/j.cclet.2016.05.008

Google Scholar

[39] N. Vasimalai, G. Sheeba, S.A. John, Ultrasensitive fluorescence-quenched chemosensor for Hg(II) in aqueous solution based on mercaptothiadiazole capped silver nanoparticles, J. Hazard. Mater. 213–214 (2012) 193–199.

DOI: 10.1016/j.jhazmat.2012.01.079

Google Scholar

[40] Y. Zhou, H. Zhao, Y. He, N. Ding, Q. Cao, Colorimetric detection of Cu2+ using 4-mercaptobenzoic acid modified silver nanoparticles, Colloids Surfaces A Physicochem. Eng. Asp. 391 (2011) 179–183.

DOI: 10.1016/j.colsurfa.2011.07.026

Google Scholar

[41] M. Zhou, L. Han, D. Deng, Z. Zhang, H. He, L. Zhang, L. Luo, 4-mercaptobenzoic acid modified silver nanoparticles-enhanced electrochemical sensor for highly sensitive detection of Cu 2+, Sensors Actuators B. Chem. 291 (2019) 164–169.

DOI: 10.1016/j.snb.2019.04.060

Google Scholar

[42] S. Das, M. Nasima, N. Kumar, P.K. Jha, M. Hossain, Sensitive and robust colorimetric assay of Hg2+ and S2− in aqueous solution directed by 5-sulfosalicylic acid-stabilized silver nanoparticles for wide range application in real samples, J. Environ. Chem. Eng. 5 (2017) 5645–5654.

DOI: 10.1016/j.jece.2017.10.053

Google Scholar

[43] N. Akaighe, R.I. MacCuspie, D.A. Navarro, D.S. Aga, S. Banerjee, M. Sohn, V.K. Sharma, Humic acid-induced silver nanoparticle formation under environmentally relevant conditions, Environ. Sci. Technol. 45 (2011) 3895–3901.

DOI: 10.1021/es103946g

Google Scholar

[44] H. Irving, R.J.P. Williams, The Stability of Transition-metal Complexes, J. Chem. Soc. (1953) 3192–3210.

Google Scholar

[45] R.B. Martin, A stability ruler for metal ion complexes, J. Chem. Educ. 64 (1987) 402.

Google Scholar

[46] A. Bianchi, P. Paletti, Considerations on the Irving-Wiliiams Series: Extension to Tetrahedral and Five-coordinated Geometries. Applications to the Macrocyclic Complexes of the 1,4,8,11-Tetramethyl-1,4,&l l-tetraazacyclotetra-decane Ligand, Inorganica Chim. Acta. 156 (1989) L37–L40.

DOI: 10.1016/s0020-1693(00)87555-6

Google Scholar