[1]
E. Cané, F. Llovell, Lourdes F. Vega Accurate viscosity predictions of linear polymers from n-alkanes data. Journal of Molecular Liquids, Vol. 243 (2017), p.115–123.
DOI: 10.1016/j.molliq.2017.08.033
Google Scholar
[2]
V.E. Krupennikova, V.D. Radnaeva, B.B. Tanganov Opredelenie dinamicheskoj vyazkosti na rotacionnom viskozimetre Brookfield. Metodicheskie ukazaniya. Ulan-Udeh, izdatel'stvo VSGTU (2011), 48 p.
Google Scholar
[3]
M.Bronzoni Rheology of polymer melts: theory, testing technique and applied processes (2017). — URL: http://docplayer.ru/25888340-Reologiya-polimerov-seminar.html (access date: 25.03.2019).
Google Scholar
[4]
ISO 2555:2018 Plastics - Resins in the liquid state or as emulsions or dispersions - Determination of apparent viscosity using a single cylinder type rotational viscometer method (2018), 17 p.
DOI: 10.3403/30339357
Google Scholar
[5]
GOST 25276-82 Polymers. Method for determination of viscosity by rotary viscosimeter at a given shear rate (1982), 7 p.
Google Scholar
[6]
ASTM D4402 / D4402M-15 Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM International, West Conshohocken, PA (2015), 4 p.
DOI: 10.1520/d4402_d4402m-12
Google Scholar
[7]
J.W.B. Stewart, J. Ruzicka, H. Bergamin-Filho, E.A.G. Zagatto Flow injection analysis. Part III. Comparison of continuous flow spectrophotometry and potentiometry for the rapid determination of the total nitrogen content in plant digests. Inorganica Chimica Acta, №81 (1976), p.371–386.
DOI: 10.1016/s0003-2670(01)82035-3
Google Scholar
[8]
V. Cerda, J.M. Estela, S.D. Kolev, I.D. McKelvie Chapter 6. On-line sample pretreatment: dissolution and digestion. Advances in Flow Injection Analysis and Related Techniques, Elsevier (2008), p.129–158.
DOI: 10.1016/s0166-526x(08)00606-5
Google Scholar
[9]
A.G.M. Ferreira, A.P.V. Egas, I.M.A. Fonseca, A.C. Costa, D.C. Abreu, L.Q. Lobo The viscosity of glycerol. The Journal of Chemical Thermodynamics, Vol. 113 (2017), p.162–182.
DOI: 10.1016/j.jct.2017.05.042
Google Scholar
[10]
M.A.S. Brasil, B.F. Reis Development of a microcontrolled flow-batch device with direct heating for analytical procedures that require a heating step for chemical reaction development. Sensors and Actuators B: Chemical, Vol. 226 (2016), p.570–578.
DOI: 10.1016/j.snb.2015.11.088
Google Scholar
[11]
R.L. Fogel'son, E.R. Likhachev Temperature dependence of viscosity. Technical Physics, Vol. 46 (2001), Is. 8, p.1056–1059.
Google Scholar
[12]
G. W. Scott. Blair, J. C. Hening, A. Wagstaff The Flow of Cream through Narrow Glass Tubes. The Journal of Physical Chemistry, Vol. 43 (1939), Is. 7, p.853–864.
DOI: 10.1021/j150394a004
Google Scholar
[13]
M. J. Cross Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. Journal of Colloid Science, Vol. 20 (1965), Is. 5, p.417–437.
DOI: 10.1016/0095-8522(65)90022-x
Google Scholar
[14]
Zwea‐Long Chen, Ping‐Yi Chao, Shih‐Hsuan Chiu Empirical viscosity model for polymers with power‐law flow behavior. Journal of applied polymer science (2003), p.3045–3057.
DOI: 10.1002/app.11768
Google Scholar
[15]
The main characteristics of INUMIT T26. — URL: http://www.inumit.ru/ img/fi le/tds_t_26.pdf (access date: 12.03.2019).
Google Scholar
[16]
E.I. Kurkin, V.О. Sadykova The Brookfield_to_MATLAB code of export and processing of measurements results of rheological characteristics on the rotational viscometer. Certificate of registration of computer software program RU 2017661812 from 28.08.(2017).
Google Scholar
[17]
P. Mitschka Simple conversion of Brookfield R.V.T. readings into viscosity functions. Rheologica Acta, №21 (1982), p.207–209.
DOI: 10.1007/bf01736420
Google Scholar