Corrosion Behavior of Ti-7 Wt.% Mn Alloy in Artificial Saliva

Article Preview

Abstract:

Ti-Mn alloy has a high specific strength, excellent cold workability and good biocompatibility. A cold rolled Ti-7 wt.% Mn was compared to annealed sample at 900°C for 10 min and the corrosion resistance property was tested in artificial saliva solution (AS). The Ti-7 wt.% Mn alloys (cold rolled and annealed) were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX) and compared to pure Ti. Simultaneously, the alloys tested in the AS solution for up to 28 days mainly by following the open-circuit potential (OCP), electrochemical impedance spectroscopy (EIS), SEM and EDX. Annealed Ti-7wt.% Mn showed good corrosion properties similar to that of pure Ti, hence the new Ti-7wt.%Mn alloy have higher specific strength than pure Ti, yet showed same corrosion properties which favor implanted dental applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

288-296

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.P. Chaturvedi, Allergy related to dental implant and its clinical significance, Clin. Cosmet. Investig. Dent. 5 (2013) 57-61.

Google Scholar

[2] S. Sridhar, F. Wang, T.G. Wilson, P. Valderrama, K. Palmer, D.C. Rodrigues, Multifaceted roles of environmental factors toward dental implant performance: Observations from clinical retrievals and in vitro testing, Dent. Mater. 34 (2018) E265-E279.

DOI: 10.1016/j.dental.2018.08.299

Google Scholar

[3] I. Dimic, I. Cvijovic-Alagic, A. Hohenwarter, R. Pippan, V. Kojic, J. Bajat, M. Rakin, Electrochemical and biocompatibility examinations of high-pressure torsion processed titanium and Ti-13Nb-13Zr alloy, J. Biomed. Mater. Res. Part B 106 (2018) 1097-1107.

DOI: 10.1002/jbm.b.33919

Google Scholar

[4] C. Liu, E.L. Zhang, Biocorrosion properties of antibacterial Ti-10Cu sintered alloy in several simulated biological solutions, J. Mater. Sci.-Mater. Med. 26 (2015) 12.

DOI: 10.1007/s10856-015-5459-6

Google Scholar

[5] B. Bozzini, P. Carlino, L. D'Urzo, V. Pepe, C. Mele, F. Venturo, An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications, J. Mater. Sci.-Mater. Med. 19 (2008) 3443-3453.

DOI: 10.1007/s10856-008-3487-1

Google Scholar

[6] H.P. Felgueiras, L. Castanheira, S. Changotade, F. Poirier, S. Oughlis, M. Henriques, C. Chakar, N. Naaman, R. Younes, V. Migonney, J.P. Celis, P. Ponthiaux, L.A. Rocha, D. Lutomski, Biotribocorrosion (tribo-electrochemical) characterization of anodized titanium biomaterial containing calcium and phosphorus before and after osteoblastic cell culture, J. Biomed. Mater. Res. Part B 103 (2015) 661-669.

DOI: 10.1002/jbm.b.33236

Google Scholar

[7] M.A. Bortagaray, C.A.A. Ibanez, M.C. Ibanez, J.C. Ibanez, Corrosion Analysis of an Experimental Noble Alloy on Commercially Pure Titanium Dental Implants, Open Dent. J. 10 (2016) 486-496.

DOI: 10.2174/1874210601610010486

Google Scholar

[8] V.A.R. Barao, C.J. Yoon, M.T. Mathew, J.C.C. Yuan, C.D. Wu, C. Sukotjo, Attachment of Porphyromonas gingivalis to Corroded Commercially Pure Titanium and Titanium-Aluminum-Vanadium Alloy, J. Periodont. 85 (2014) 1275-1282.

DOI: 10.1902/jop.2014.130595

Google Scholar

[9] J.M.C. Moreno, M. Popa, S. Ivanescu, C. Vasilescu, S.I. Drob, E.I. Neacsu, M.V. Popa, Microstructure, mechanical properties, and corrosion resistance of Ti-20Zr alloy in undoped and NaF doped artificial saliva, Met. Mater.-Int. 20 (2014) 177-187.

DOI: 10.1007/s12540-013-6031-x

Google Scholar

[10] C.E.B. Marino, L.H. Mascaro, Electrochemical Tests to Evaluate the Stability of the Anodic Films on Dental Implants, Int. J. Electrochem. (2011) 7.

Google Scholar

[11] L.X. Yang, S. Hao, Q.L. Zhu, D.H. Xia, J.X. Wang, J.F. Zhang, J.Z. Ma, W. Wei, Degradation Behavior of Ti-6Al-4V Alloys for Dental Applications in Acidic Artificial Saliva Containing Fluoride Ion, J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32 (2017) 926-934.

DOI: 10.1007/s11595-017-1692-9

Google Scholar

[12] A. Revathi, A.D. Borras, A.I. Mutioz, C. Richard, G. Manivasagam, Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment, Mater. Sci. Eng. C-Mater. Biol. Appl. 76 (2017) 1354-1368.

DOI: 10.1016/j.msec.2017.02.159

Google Scholar

[13] J.C.M. Souza, S.L. Barbosa, E.A. Ariza, M. Henriques, W. Teughels, P. Ponthiaux, J.P. Celis, L.A. Rocha, How do titanium and Ti6A14V corrode in fluoridated medium as found in the oral cavity? An in vitro study, Mater. Sci. Eng. C-Mater. Biol. Appl. 47 (2015) 384-393.

DOI: 10.1016/j.msec.2014.11.055

Google Scholar

[14] M.P. Licausi, A.I. Munoz, V.A. Borras, Tribocorrosion mechanisms of Ti6Al4V biomedical alloys in artificial saliva with different pHs, J. Phys. D-Appl. Phys. 46 (2013) 10.

DOI: 10.1088/0022-3727/46/40/404003

Google Scholar

[15] E. Vasilescu, P. Drob, C. Vasilescu, S.I. Drob, E. Bertrand, D.M. Gordin, T. Gloriant, Corrosion resistance of the new Ti-25Ta-25Nb alloy in severe functional conditions, Mater. Corros. 61 (2010) 947-954.

DOI: 10.1002/maco.201005740

Google Scholar

[16] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants–a review, Progress in materials science 54 (2009) 397-425.

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[17] G.-Y. Huang, H.B. Jiang, J.-Y. Cha, K.-M. Kim, C.-J. Hwang, The effect of fluoride-containing oral rinses on the corrosion resistance of titanium alloy (Ti-6Al-4V), The Korean Journal of Orthodontics 47 (2017) 306-312.

DOI: 10.4041/kjod.2017.47.5.306

Google Scholar

[18] I. Golvano, I. Garcia, A. Conde, W. Tato, A. Aginagalde, Influence of fluoride content and pH on corrosion and tribocorrosion behaviour of Ti13Nb13Zr alloy in oral environment, J. Mech. Behav. Biomed. Mater. 49 (2015) 186-196.

DOI: 10.1016/j.jmbbm.2015.05.008

Google Scholar

[19] S.L.d. Assis, I. Costa, Electrochemical evaluation of Ti‐13Nb‐13Zr, Ti‐6Al‐4V and Ti‐6Al‐7Nb alloys for biomedical application by long‐term immersion tests, Materials and Corrosion 58 (2007) 329-333.

DOI: 10.1002/maco.200604027

Google Scholar

[20] S. Polizzi, E. Pira, M. Ferrara, M. Bugiani, A. Papaleo, R. Albera, S. Palmi, Neurotoxic effects of aluminium among foundry workers and Alzheimer's disease, Neurotoxicology 23 (2002) 761-774.

DOI: 10.1016/s0161-813x(02)00097-9

Google Scholar

[21] I. Mutlu, S. Yeniyol, E. Oktay, Characterisation of corrosion properties of Ti-Nb-Cu alloy foam by electrochemical impedance spectroscopy method, Corros. Eng. Sci. Technol. 51 (2016) 110-117.

DOI: 10.1179/1743278215y.0000000037

Google Scholar

[22] D. Mareci, E.N. Dragoi, G. Bolat, R. Chelariu, D. Gordin, S. Curteanu, Modelling the influence of pH, fluoride, and caffeine on the corrosion resistance of TiMo alloys by artificial neural networks developed with differential evolution algorithm, Mater. Corros. 66 (2015) 982-994.

DOI: 10.1002/maco.201408077

Google Scholar

[23] H.M. Shim, K.T. Oh, J.Y. Woo, C.J. Hwang, K.N. Kim, Corrosion resistance of titanium-silver alloys in an artificial saliva containing fluoride ions, J. Biomed. Mater. Res. Part B 73B (2005) 252-259.

DOI: 10.1002/jbm.b.30206

Google Scholar

[24] K.T. Oh, D.K. Kang, G.S. Choi, K.N. Kim, Cytocompatibility and electrochemical properties of Ti-Au alloys for biomedical applications, J. Biomed. Mater. Res. Part B 83B (2007) 320-326.

DOI: 10.1002/jbm.b.30798

Google Scholar

[25] Y. TAKADA, H. NAKAJIMA, O. OKUNO, T. OKABE, Microstructure and corrosion behavior of binary titanium alloys with beta-stabilizing elements, Dental materials journal 20 (2001) 34-52.

DOI: 10.4012/dmj.20.34

Google Scholar

[26] P. Santos, M. Niinomi, K. Cho, M. Nakai, H. Liu, Development of New Ti‐Mn‐Mo Alloys for Use in Biomedical Applications, Proceedings of the 13th World Conference on Titanium, Wiley Online Library, 2016, pp.1741-1745.

DOI: 10.1002/9781119296126.ch293

Google Scholar

[27] K.T. Oh, H.M. Shim, K.N. Kim, Properties of titanium-silver alloys for dental application, J. Biomed. Mater. Res. Part B 74B (2005) 649-658.

DOI: 10.1002/jbm.b.30259

Google Scholar

[28] S. Mohandoss, S. Sureshkumar, V. Balasubramani, B. Venkatachalapathy, T.M. Sridhar, Bioinert nano yttria stabilized zirconia coatings on 316L SS for dental applications, J. Ceram. Process. Res. 18 (2017) 313-319.

Google Scholar

[29] X. Yin, Y.H. Sun, Y.D. Yang, X.F. Bai, M. Barati, A. McLean, Formation of Inclusions in Ti-Stabilized 17Cr Austenitic Stainless Steel, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 47 (2016) 3274-3284.

DOI: 10.1007/s11663-016-0681-2

Google Scholar

[30] S. Ghosh, S. Mula, Thermomechanical processing of low carbon Nb-Ti stabilized microalloyed steel: Microstructure and mechanical properties, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 646 (2015) 218-233.

DOI: 10.1016/j.msea.2015.08.072

Google Scholar

[31] D. Mareci, R. Chelariu, G. Bolat, A. Cailean, V. Grancea, D. Sutiman, Electrochemical behaviour of Ti alloys containing Mo and Ta as beta-stabilizer elements for dental application, Trans. Nonferrous Met. Soc. China 23 (2013) 3829-3836.

DOI: 10.1016/s1003-6326(13)62936-2

Google Scholar

[32] R. Rodríguez-Díaz, A. Ramirez-Ledesma, M. Aguilar-Mendez, J.U. Chavarin, M.H. Gallegos, J. Juarez-Islas, Electrochemical Corrosion Behavior of a Co20Cr Alloy in Artificial Saliva, Int. J. Electrochem. Sci 10 (2015) 2.

Google Scholar

[33] F. Mansfeld, Recording and analysis of AC impedance data for corrosion studies, Corrosion 37 (1981) 301-307.

DOI: 10.5006/1.3621688

Google Scholar