[1]
G. F. Comstock, Titanium in Iron and Steel, New York: John Wiley & Sons Inc, (1955).
Google Scholar
[2]
T. N. Baker, Processes, microstructure and properties of vanadium microalloyed steels,, Materials Science and Technology, vol. 25, no. 9, pp.1083-1107, (2009).
DOI: 10.1179/174328409x453253
Google Scholar
[3]
S. Zajac, T. Siwecki, W. B. Hutchinson and R. Lagneb, Strengthening mechanisms in vanadium microalloyed steels intended for long products,, ISIJ international, vol. 38, no. 10, pp.1130-1139, (1998).
DOI: 10.2355/isijinternational.38.1130
Google Scholar
[4]
H. l. Wei, G. q. Liu, H. t. Zhao and M. h. Zhang, Effect of carbon content on hot deformation behaviors of vanadium microalloyed steels,, Materials Science & Engineering A, vol. 596, p.112–120, (2014).
DOI: 10.1016/j.msea.2013.12.063
Google Scholar
[5]
Z. Baochun, . Z. Tan, . L. Guiyan and L. Qiang,, Effect of Nitrogen on Transformation Behaviors and Microstructure of V-N Microalloyed Steel,, in HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015The Chinese Society for Metals (CSM) and Chinese Academy of Engineering (CAE) ,TMS, 2016, China, (2015).
DOI: 10.1007/978-3-319-48767-0
Google Scholar
[6]
R. W. Vanderbeck, controlled low temperature hot rolling as practiced in Europe,, weld journal, vol. 37, no. 3, pp.114-116, (1958).
Google Scholar
[7]
J. G. Lenard, State-of- The-Art of Controlled Rolling,, in Modeling Hot Deformation of Steels, Berlin Heidelberg, Springer- Verlag , 1989, pp.1-18.
Google Scholar
[8]
H. Mirzadeh, J. M. Cabrera, J. M. Prado and A. Najafizadeh, Hot deformation behavior of a medium carbon microalloyed steel,, Materials Science and Engineering A, vol. 528, pp.3876-3882, (2011).
DOI: 10.1016/j.msea.2011.01.098
Google Scholar
[9]
D. Kundalkar and A. Tewari, Effect of Strain, Strain Rate and Temperature of Hot Deformation on Microstructural Evolution of Ti and V Microalloyed Steel,, international Journal of Metallurgical Engineering, vol. 2, no. 2, pp.117-124, (2013).
Google Scholar
[10]
J. Xia, X. Huo, L. Li, Z. Peng and S. Chen, Development of Ti microalloyed high strength steel plate by controlling thermo-mechanical control process schedule,, Materials Research Express, vol. 4, no. 12, pp.1-11, (2017).
DOI: 10.1088/2053-1591/aa9bba
Google Scholar
[11]
Y. Prasad and S. Sasidhara, Hot Working Guide - A Compendium of Processing Maps, USA: ASM International, (1997).
Google Scholar
[12]
R. d. S. Septimio, S. T. Button and C. J. V. Tyne, Processing maps for the analysis of hot workability of microalloyed steels 38MnSiVS5 and 0.39C1.47Mn,, Mater Sci, vol. 51, pp.2512-2528, (2016).
DOI: 10.1007/s10853-015-9563-2
Google Scholar
[13]
A. Karmakar, P. Sahu, S. Neogy, D. Chakrabarti, R. Mitra, S. Mukherjee and S. Kundu, Effect of Cooling Rate and Chemical Composition on Microstructure and Properties of Naturally Cooled Vanadium-Microalloyed Steels,, Metallurgical and Materials Transactions A, vol. 48, no. 4, pp.1581-1595, (2017).
DOI: 10.1007/s11661-017-3964-6
Google Scholar
[14]
W. Pengfei, Z. Li, G. Lin, S. Z. Caifuyan and . Q. Yong, Influence of Vanadium on the Microstructure and Mechanical Properties of Medium-Carbon Steels for Wheels,, Metals, vol. 8, no. 12, p. article no.978, (2018).
DOI: 10.3390/met8120978
Google Scholar
[15]
N. Zhou, F. Zhao, . M. Wu, B. Jiang , C. Zhang and Y. Liu, Hot workability of V-Ti microalloyed steel for forging,, Metall. Res. Technol., vol. 116, pp.216-221, (2019).
DOI: 10.1051/metal/2018066
Google Scholar
[16]
G. M. Megahed, S. K. Paul, T. A. El-Bitar and F. Ibrhim, Development of X60/X70 Line Pipe Steels through EAF-Thin Slab Casting Technology at Ezz Flat Steel, Ain Sukhna, Egypt,, Materials Science Forum, Vols. 500-501, pp.261-268, (2005).
DOI: 10.4028/www.scientific.net/msf.500-501.261
Google Scholar
[17]
S. Vervynckt, K. Verbeken, B. Lopez and J. J. Jonas, Modern HSLA steels and role of non-recrystallisation temperature,, International Materials Reviews, vol. 57, no. 4, pp.187-207, (2012).
DOI: 10.1179/1743280411y.0000000013
Google Scholar
[18]
A. A. Karmakar, S. Biswas, S. Mukherjee, D. Chakrabarti and V. Kumar, Effect of composition and thermo-mechanical processing schedule on the microstructure, precipitation and strengthening of Nb-microalloyed steel,, Materials Science & Engineering A, vol. 690, pp.158-169, (2017).
DOI: 10.1016/j.msea.2017.02.101
Google Scholar
[19]
Z. X. Guo, thermomechanical processing of ferrous alloys,, in The Deformation and Processing of Structural Materials, Boca Raton,USA, CRC press, 2005, pp.76-125.
DOI: 10.1533/9781845690786.76
Google Scholar
[20]
H. Niakana and A. Najafizadehb, Effect of niobium and rolling parameters on the mechanical properties and microstructure of dual phase steels,, Materials Science & Engineering A, vol. 527, pp.5410-5414, (2010).
DOI: 10.1016/j.msea.2010.05.078
Google Scholar
[21]
L. B. Gomez, A. M. Flores and H. Carreon, Production and characterization of niobium and titanium microalloyed steels,, REVISTA MEXICANA DE FÍSICA S, vol. 55, no. 1, pp.110-113, (2009).
Google Scholar
[22]
B. K. Panigrahi, Processing of low carbon steel plate and hot strip—an overview,, Bull. Mater. Sci., vol. 24, no. 4, pp.361-371, (2001).
DOI: 10.1007/bf02708632
Google Scholar
[23]
T. El-Bitar, M. El-Meligy and E. El-Shenawy, Prediction of roll separating force in a roll pass,, High Performance and Optimum Design of Structures and Materials, vol. 137, pp.67-77, (2014).
DOI: 10.2495/hpsm140071
Google Scholar
[24]
S. Q. Yuan and G. L. Liang, Microstructures and Mechanical Properties of an Ultra-Fine Acicular Ferrite/Bainite Steel Plate,, Adv. Mater. Sci., vol. 33, pp.73-76, (2013).
Google Scholar
[25]
A. A. Lakshmi, C. S. Rao, J. Gangadhar, C. Srinivasu and S. Singh, Review of Processing Maps and Development of Qualitative Processing Maps,, Materials Today, vol. 4, pp.946-956, (2017).
DOI: 10.1016/j.matpr.2017.01.106
Google Scholar
[26]
S. F. Medina and C. A. Hernandez, General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels,, Acta Mater, vol. 44, no. 1, pp.137-148, (1996).
DOI: 10.1016/1359-6454(95)00151-0
Google Scholar
[27]
M. R. El-Meliegy, T. El- Bitar and B. Tabakova, Numerical Model Detecting The Effect Of Inter- Pass Time On Grain Size For Nb- Microalloyed Steel,, in 2nd International Conference On Advances in Engineering Sciences & Technologies, Sofia, Bolgarya, (2005).
Google Scholar
[28]
P. Uranga, B. López and J. R. Ibabe, Thermo-mechanical Treatments of long products: from Conventional to Innovative Solutions,, in Metals Processing and Manufacturing Conference (MPM 07), Cairo, Egypt, (2007).
Google Scholar
[29]
T. El-Bitar, M. El-meligy and E. El-Shenawy, Detection of dynamic softening during hot deformation of medium Si-steels by a Thermo- mechanical Simulator ( Gleeble 3500),, International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), vol. 5, no. 6, pp.65-74, (2015).
Google Scholar
[30]
T. El-Bitar, M. El-Meligy, E. El-Shenawy, A. Almosilhy and N. Dawood, Thermo-Mechanical Processing of Armor Steel Plates,, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol. 11, no. 3, pp.179-185, (2017).
DOI: 10.4028/www.scientific.net/msf.879.489
Google Scholar
[31]
T. El-Bitar, E. El-Shenawy and M. El-meligy, Physical simulation of thermo-mechanical processing of ferritic-bainitic dual phase (FBDP) steel,, Materials Science Forum, vol. 879, pp.495-501, (2016).
DOI: 10.4028/www.scientific.net/msf.879.495
Google Scholar
[32]
A. E.-S. Ali and M. El-Meligy, Studying the effect of changing deformation and cooling rate on natural gas lines steels toughness, Egypt: , graduation project report, Faculty of Engineering, Helwan University, (2016).
Google Scholar
[33]
A. A. Gorni, Steel Forming and Heat Treatment Handbook, Sao Vicente SP, Brazil, (2013).
Google Scholar
[34]
M. Yousef, M. Samuel, M. El-Melig and T. El-Bitar, Hot Deformability of Si-Steel strips Containing Al," Hot Deformability of Si-Steel strips Containing Al, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol. 11, no. 10, pp.643-647, (2017).
Google Scholar
[35]
S. Gourdet and F. Montheillet, A model of continuous dynamic recrystallization,, Acta Mater., vol. 51, pp.2685-2699, (2003).
DOI: 10.1016/s1359-6454(03)00078-8
Google Scholar
[36]
J. Kang and S. Torizuka, Dynamic recrystallization by large strain deformation with a high strain rate in an ultralow carbon steel,, Scripta Materialia, vol. 57, no. 11, pp.1048-51, (2007).
DOI: 10.1016/j.scriptamat.2007.07.039
Google Scholar
[37]
T. El-Bitar, C. Klinkenberg, G. Megahed and A. El-Kady, Processing of Nb-microalloyed X52 line pipe steel at ANSDK' CSP Plant,, in 2nd International conference on the Thermomechanical Processing of Steels (TMP 2004), Liege/Belgium, (2004).
Google Scholar
[38]
T. El-Bitar, E. El-Shenawy, M. El-Meligy, A. Almosilhy and N. Dawood, Development of Armor High Strength Steel (HSS) Martensitic Plates for Troops Carriers,, Materials Science Forum, vol. 879, pp.489-494, (2016).
DOI: 10.4028/www.scientific.net/msf.879.489
Google Scholar
[39]
T. El-Bitar, E. El-Shenawy, M. El-Meligy, A. Almosilhy and N. Dawood, Final report on Technology Packages for Processing ARMOX 500B Steel in Abou Zabaal Engineering Industries Company (Military Factory 100),, (2015).
DOI: 10.4028/www.scientific.net/msf.879.489
Google Scholar