Optimization and Characterization of Aluminum Induced Texture Using Radio Frequency Power

Article Preview

Abstract:

The purpose of this study aims to investigate the surface morphology and roughness of Aluminum induced glass texturing (AIT) substrate after different surface treatments. Aluminum layers were deposited in thickness 370 nm and 240 nm on corning glass sheet using Radio Frequency (RF) power. The effect of different concentrations of hydrofluoric acid (HF), 4%, 5% and 6% on morphology, optical absorption and surface roughness of glass was described. The dipping time of coated glass sheet in HF for 2 min and 5 min created very rough and soft surface, respectively. Optical absorption of AIT substrate after dipping in HF was measured. The optimum texturing process achieved by deposition of aluminum layer 240 nm of thickness and dipping the substrate in 5% HF. The AIT substrate was characterized by low angle X-ray diffraction (XRD), ultraviolet-visible spectrophotometer (UV-VIS), stylus profiler and scanning electron microscope (SEM).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

359-366

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Gordon, Y. Qiu, D. Van Gestel, J. Poortmans, Thin-film monocrystalline-silicon solar cells based on a seed layer approach with 11% efficiency, in Thin Film Solar Technology II conference, International Society for Optics and Photonics, 7771 (2010) 1-6.

DOI: 10.1117/12.860385

Google Scholar

[2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency tables (version 45), Progress in photovoltaics: research and applications, 23 (2015) 1-9.

DOI: 10.1002/pip.2573

Google Scholar

[3] V. E. Ferry, M. A. Verschuuren, M. C.v. Lare, R. E. Schropp, H. A. Atwater, A. Polman, Optimized Spatial Correlations for Broadband Light Trapping Nanopatterns in High Efficiency Ultrathin Film a-Si:H Solar Cells, Nano Letter, 11 (2011) 4239-4245.

DOI: 10.1021/nl202226r

Google Scholar

[4] S. Jeong, S. Wang, Y. Cui, Nanoscale photon management in silicon solar cells, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 30 (2012) 1-11.

DOI: 10.1116/1.4759260

Google Scholar

[5] V.‏ E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp,‏ Light trapping in ultrathin plasmonic solar cells,‏ Optics express, 18 (2010) A237-A245.

DOI: 10.1364/oe.18.00a237

Google Scholar

[6] S. M. Sze, K.K. Ng, Physics of semiconductor devices, third ed., John wiley & sons, (2006).

Google Scholar

[7] A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, Thin‏ film silicon solar cell technology,‏ Progress in photovoltaics: Research and applications, 12 (2004) 113-142.

DOI: 10.1002/pip.533

Google Scholar

[8] H. Park, D. Kim, J. Jung, D. P. Pham, A. H. Le, J. Cho, S. Q. Hussain, J. Yi, HF etched glass substrates for improved thin-film solar cells, Heliyon, 4 (2018) 1-17.

DOI: 10.1016/j.heliyon.2018.e00835

Google Scholar

[9] J.J. Ji, Z. Shi, Texturing of glass by SiO2 film, U.S. patent 6,420,647. (2002).

Google Scholar

[10] P. Campbell, Enhancement of absorption in silicon films using a pressed glass substrate texture, Glass technology, 43 (2002) 107-111.

Google Scholar

[11] M. Ünal, H. Nasser, M. Günöven, İ. Sökmen, A. Tankut, R. Turan, Effect of aluminum thickness and etching time of aluminum induced texturing process on soda lime glass substrates for thin solar cell applications, physica status solidi (c), 12 (2015) 1201-1205.

DOI: 10.1002/pssc.201510125

Google Scholar

[12] M. Lluscà, F. Urbain, V. Smirnov, A. Antony, J. Andreu, J. Bertomeu, Aluminum induced texturing of glass substrates with improved light management for thin film solar cells, Solar Energy Materials and Solar Cells, 147 (2016) 276-280.

DOI: 10.1016/j.solmat.2015.12.028

Google Scholar

[13] A. Rayerfrancis, P.B. Bhargav, N. Ahmed, C. Balaji, G. Kumar, Glass surface etching with Aluminium-induced texture process for thin film solar cell applications, Materials Letters, 221 (2018) 305-308.

DOI: 10.1016/j.matlet.2018.03.154

Google Scholar

[14] H.‏ W. Deckman, J.‏ H. Dunsmuir, Natural lithography, Applied Physics Letters, 41 (1982) 377-379.

DOI: 10.1063/1.93501

Google Scholar

[15] M. Abdullah, M. Alghoul, H. Naser, N. Asim, S. Ahmadi, B. Yatim, K. Sopian, Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell, Renewable and Sustainable Energy Reviews, 66 (2016) 380-398.

DOI: 10.1016/j.rser.2016.07.065

Google Scholar

[16] M.‏ L. Addonizio, L. Fusco, A. Antonaia, F. Cominale, I. Usatii, Optimization of surface morphology and scattering properties of TCO/AIT textured glass front electrode for thin film solar cells, Applied Surface Science, 357 ‏)2015‏( 651-658.

DOI: 10.1016/j.apsusc.2015.09.073

Google Scholar

[17] M. Ünal, Z. Demircioğlu, E. Dönerçark, E. Özkol, R. Turan, Aluminum induced texturing of sandy and prism glasses: Combination of micro/nano texture with macro texture, physica status solidi (a), 214 (2017) 1-6.

DOI: 10.1002/pssa.201600856

Google Scholar

[18] O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, H. W. Schock, Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells, Thin Solid Films, 351 (1999) 247- 253.

DOI: 10.1016/s0040-6090(99)00085-1

Google Scholar

[19] J. Müller, B. Rech, J. Springer, M. Vanecek, TCO and light trapping in silicon thin film solar cells, Solar energy, 77 (2004) 917-930.

DOI: 10.1016/j.solener.2004.03.015

Google Scholar

[20] H. Cui, P. Gress, P. Campbell, M. Green, Developments in the aluminium induced texturing (AIT) glass process, Glass Technology-European Journal of Glass Science and Technology Part A, 53 (2012) 158-165.

Google Scholar