[1]
H.S. Nalwa, Handbook of thin films, Five-volume set, Elsevier, (2001).
Google Scholar
[2]
M. Rao, M. Shekhawat, A brief survey on basic properties of thin films for device application, International Journal of Modern Physics: Conference Series, World Scientific, 2013, pp.576-582.
DOI: 10.1142/s2010194513010696
Google Scholar
[3]
Information on http://www.nanoscience.gatech.edu/publications/papers.
Google Scholar
[4]
Z.L. Wang, L. Lin, J. Chen, S. Niu, Y. Zi, Triboelectric nanogenerators, Springer, (2016).
Google Scholar
[5]
X.D. Yang, J.J. Han, G. Wang, L.P. Liao, C.Y. Xu, W. Hu, P. Li, B. Wu, A.M. Elseman, G.D. Zhou, Q.L. Song, Robust perovskite-based triboelectric nanogenerator enhanced by broadband light and interface engineering, J. Mater Sci., 54 (2019) 9004–9016.
DOI: 10.1007/s10853-019-03351-9
Google Scholar
[6]
J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi, Q. Jing, H. Guo, Z. Wen, K.C. Pradel, S.J. Niu, Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy, ACS Nano 9 (2015) 3324-3331.
DOI: 10.1021/acsnano.5b00534
Google Scholar
[7]
A. Farid, H. Atyia, N.J.V. Hegab, AC conductivity and dielectric properties of Sb2Te3 thin films, Vacuum 80 (2005) 284-294.
DOI: 10.1016/j.vacuum.2005.05.003
Google Scholar
[8]
H. Zou, D. Rowe, S.J. Williams, Peltier effect in a co-evaporated Sb2Te3 (P)-Bi2Te3 (N) thin film thermocouple, Thin Solid Films 408 (2002) 270-274.
DOI: 10.1016/s0040-6090(02)00077-9
Google Scholar
[9]
J. Yang, W. Zhu, X. Gao, X. Fan, S. Bao, X.J. Duan, Electrochemical aspects of depositing Sb2Te3 compound on Au substrate by ECALE, J. Electacta 52 (2007) 3035-3039.
DOI: 10.1016/j.electacta.2006.09.045
Google Scholar
[10]
N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, V.J. Canevari, S. Cells, A highly efficient and stable CdTe/CdS thin film solar cell, Solar Energy Materials and Solar Cells 58 (1999) 209-218.
DOI: 10.1016/s0927-0248(98)00204-9
Google Scholar
[11]
A. Abken, O.J. Bartelt, Sputtered Mo/Sb2Te3 and Ni/Sb2Te3 layers as back contacts for CdTe/CdS solar cells, Thin Solid Films 403 (2002) 216-222.
DOI: 10.1016/s0040-6090(01)01527-9
Google Scholar
[12]
H. Khachatryan, S.N. Lee, K.B. Kim, H.K. Kim, M.J. Kim, Al thin film: The effect of substrate type on Al film formation and morphology, J. Phys. Chem. Solids122 (2018) 109-117.
DOI: 10.1016/j.jpcs.2018.06.018
Google Scholar
[13]
H. Soliman, S. Yaghmour, H.J. Al-Solami, Heat-treatment effect on the structural and optical properties of flash evaporated Sb2Te3 thin films, Eur. Phys. J. Appl. Phys. 44 (2008) 59-64.
DOI: 10.1051/epjap:2008132
Google Scholar
[14]
I.J. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, surf. coat. technol. 127 (2000) 203-218.
DOI: 10.1016/s0257-8972(00)00566-1
Google Scholar
[15]
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J.J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9 (2008) 30-35.
DOI: 10.1021/nl801827v
Google Scholar
[16]
R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, N.J. El-Masry, MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications, j. cryst. growth 170 (1997) 817-821.
DOI: 10.1016/s0022-0248(96)00656-2
Google Scholar
[17]
Z. Nie, C.A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A.W. Martinez, M. Narovlyansky, G.M. Whitesides, Electrochemical sensing in paper-based microfluidic devices, Lab Chip 10 (2010) 477-483.
DOI: 10.1039/b917150a
Google Scholar
[18]
I.Y. Erdoğan, Ü.J. Demir, Synthesis and characterization of Sb2Te3 nanofilms via electrochemical co-deposition method, J. Jelechem. 633 (2009) 253-258.
DOI: 10.1016/j.jelechem.2009.06.010
Google Scholar
[19]
K. Bordo, H.G. Rubahn, Effect of deposition rate on structure and surface morphology of thin evaporated Al films on dielectrics and semiconductors, Materials Science 18 (2012) 313-317.
DOI: 10.5755/j01.ms.18.4.3088
Google Scholar
[20]
E. Wallin, Alumina Thin Films: from computer calculations to cutting tools, Linköping University Electronic Press, (2008).
Google Scholar
[21]
B. Lv, S. Hu, W. Li, X. Di, L. Feng, J. Zhang, L. Wu, Y. Cai, B. Li, Z.J. Lei, Preparation and characterization of Sb2Ti3 thin films by coevaporation, int. j. photoenergy 2010: 4 P. Article ID 476589.
Google Scholar
[22]
P. Quintana, A. Oliva, O. Ceh, J. Corona, M.J. Aguilar, Thickness effects on aluminum thin films,Vacio 9 (1999) 280-282.
DOI: 10.1016/s0040-6090(99)00370-3
Google Scholar
[23]
D. Ketenoğlu, B.J. Ünal, Influence of surface roughness on the electrical conductivity of semiconducting thin films, J. Physica A 392 (2013) 3008-3017.
DOI: 10.1016/j.physa.2013.03.007
Google Scholar
[24]
B.R. Kumar, T.S. Rao, AFM Studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films, Digest J. Nanomater. Biostruct. 7 (2012) 1881-1889.
Google Scholar
[25]
G. Reiss, H.J. Brückl, The influence of surface roughness on electronic transport in thin films, Surface Science 269 (1992) 772-776.
DOI: 10.1016/0039-6028(92)91347-e
Google Scholar
[26]
T. Šalkus, E. Kazakevičius, J. Banys, M. Kranjčec, A. Chomolyak, Y.Y. Neimet, I.J. Studenyak, Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics, Solid State Ionics 262 (2014) 597-600.
DOI: 10.1016/j.ssi.2013.10.040
Google Scholar
[27]
E.C. Espinosa, E. Rosendo, T. Díaz, A. Oliva, V. Rejon, J.J. Peña, Effects of temperature and deposition time on the RF-sputtered CdTe films preparation, Vacio 27 (2014) 15-19.
Google Scholar
[28]
H. Shah, R. Jayaganthan, D.J. Kaur, Effect of sputtering pressure and temperature on DC magnetron sputtered CrN films, Surface Engineering 26 (2010) 629-637.
DOI: 10.1179/174329409x389326
Google Scholar
[29]
F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator, Nano Energy 1 (2012) 328-334.
Google Scholar
[30]
X. Wang, S. Niu, Y. Yin, F. Yi, Z. You, Z.L. Wang, Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low frequency water wave energy, Advanced Energy Materials 5 (2015) 1501467.
DOI: 10.1002/aenm.201501467
Google Scholar
[31]
S. Rathore, S. Sharma, B.P. Swain, R.K. Ghadai, A Critical review on triboelectric nanogenerator, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, p.012186.
DOI: 10.1088/1757-899x/377/1/012186
Google Scholar
[32]
Information on http://www.ossila.com/pages/sheet-resistance-theory.
Google Scholar
[33]
L.D. Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondakor, T. Mitrelias, C.H. Barnes, J.A. Aguiar, Y. Majima, Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates, Thin Solid Films 520 (2012)6368-6374.
DOI: 10.1016/j.tsf.2012.06.043
Google Scholar
[34]
V.P. Zhuze, B.V. Kurchatov, The electrical conductivity of copper oxide, Physik. Zeits. Sowjetunion 2 (1932) 453-467.
Google Scholar
[35]
L.C. Olsen, F.W. Addis, W. Miller, Experimental and theoretical studies of Cu2O solar cells, Sol. Cells 7 (1982–1983) 247-279.
DOI: 10.1016/0379-6787(82)90050-3
Google Scholar
[36]
N. Kikuchi, K. Tonooka, Electrical and structural properties of Ni-doped CuO films prepared by pulsed laser deposition, Thin Solids Films 486 (2005) 33-37.
DOI: 10.1016/j.tsf.2004.12.044
Google Scholar
[37]
J. Xue, R. Dickmann, The non-stoichiometry and the point defect structure of cuprous oxide (Cu2−δO), J. Phys. Chem. Solids 51 (1990) 1263-1275.
DOI: 10.1016/0022-3697(90)90003-x
Google Scholar