Thin Films in Triboelectric Nanogenerators for Blue Energy Harvesting: Fabrication, Characterization, and Modeling

Article Preview

Abstract:

Renewable energy attracts many researchers as the non-renewable one has negative environmental impacts and limited availability. One of the main types of renewable energy is the blue energy where electricity is generated by water waves using triboelectric nanogenerators (TENGs). Thin films play an important role in the performance and therefore the efficiency of TENGs as they represent the electrodes between which electrons move producing electricity. In order to increase the generated electricity from TENGs, the properties of these electrodes should be modified. Therefore, in this paper, nano- and micro-size thin films are fabricated and characterized by measuring the geometrical parameters and electrical properties. Thin films are fabricated using aluminum with thicknesses 0.5 μm and 1.5 μm on acrylic substrate and 0.5 μm copper film on different types of dielectric materials including PVC and polystyrene. Atomic force microscopy is used to measure the geometrical parameters of the fabricated films including thickness and surface roughness. Also, Gwyddion software is used for the grain size evaluation. On the other hand, Keithley is used for measuring the electrical properties including electrical conductivity and sheet resistance. It is found that the electrical conductivity of aluminum films is inversely proportional to the thickness. The corresponding measured values of the electrical conductivity of the fabricated thinner and thicker aluminum films equal 1.7 x 107 (Ω.m)-1 and 1.4×107 (Ω.m)-1, respectively. Whereas, the electrical conductivity of the fabricated copper film equals 8.8×107 (Ω.m)-1. In addition, the temperature effects on the electrical conductivity are studied. Finally, simulation of a TENG using COMSOL software is accomplished in order to evaluate the electrical outputs of potential, charge, and energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

335-346

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.S. Nalwa, Handbook of thin films, Five-volume set, Elsevier, (2001).

Google Scholar

[2] M. Rao, M. Shekhawat, A brief survey on basic properties of thin films for device application, International Journal of Modern Physics: Conference Series, World Scientific, 2013, pp.576-582.

DOI: 10.1142/s2010194513010696

Google Scholar

[3] Information on http://www.nanoscience.gatech.edu/publications/papers.

Google Scholar

[4] Z.L. Wang, L. Lin, J. Chen, S. Niu, Y. Zi, Triboelectric nanogenerators, Springer, (2016).

Google Scholar

[5] X.D. Yang, J.J. Han, G. Wang, L.P. Liao, C.Y. Xu, W. Hu, P. Li, B. Wu, A.M. Elseman, G.D. Zhou, Q.L. Song, Robust perovskite-based triboelectric nanogenerator enhanced by broadband light and interface engineering, J. Mater Sci., 54 (2019) 9004–9016.

DOI: 10.1007/s10853-019-03351-9

Google Scholar

[6] J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi, Q. Jing, H. Guo, Z. Wen, K.C. Pradel, S.J. Niu, Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy, ACS Nano 9 (2015) 3324-3331.

DOI: 10.1021/acsnano.5b00534

Google Scholar

[7] A. Farid, H. Atyia, N.J.V. Hegab, AC conductivity and dielectric properties of Sb2Te3 thin films, Vacuum 80 (2005) 284-294.

DOI: 10.1016/j.vacuum.2005.05.003

Google Scholar

[8] H. Zou, D. Rowe, S.J. Williams, Peltier effect in a co-evaporated Sb2Te3 (P)-Bi2Te3 (N) thin film thermocouple, Thin Solid Films 408 (2002) 270-274.

DOI: 10.1016/s0040-6090(02)00077-9

Google Scholar

[9] J. Yang, W. Zhu, X. Gao, X. Fan, S. Bao, X.J. Duan, Electrochemical aspects of depositing Sb2Te3 compound on Au substrate by ECALE, J. Electacta 52 (2007) 3035-3039.

DOI: 10.1016/j.electacta.2006.09.045

Google Scholar

[10] N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, V.J. Canevari, S. Cells, A highly efficient and stable CdTe/CdS thin film solar cell, Solar Energy Materials and Solar Cells 58 (1999) 209-218.

DOI: 10.1016/s0927-0248(98)00204-9

Google Scholar

[11] A. Abken, O.J. Bartelt, Sputtered Mo/Sb2Te3 and Ni/Sb2Te3 layers as back contacts for CdTe/CdS solar cells, Thin Solid Films 403 (2002) 216-222.

DOI: 10.1016/s0040-6090(01)01527-9

Google Scholar

[12] H. Khachatryan, S.N. Lee, K.B. Kim, H.K. Kim, M.J. Kim, Al thin film: The effect of substrate type on Al film formation and morphology, J. Phys. Chem. Solids122 (2018) 109-117.

DOI: 10.1016/j.jpcs.2018.06.018

Google Scholar

[13] H. Soliman, S. Yaghmour, H.J. Al-Solami, Heat-treatment effect on the structural and optical properties of flash evaporated Sb2Te3 thin films, Eur. Phys. J. Appl. Phys. 44 (2008) 59-64.

DOI: 10.1051/epjap:2008132

Google Scholar

[14] I.J. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, surf. coat. technol. 127 (2000) 203-218.

DOI: 10.1016/s0257-8972(00)00566-1

Google Scholar

[15] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J.J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9 (2008) 30-35.

DOI: 10.1021/nl801827v

Google Scholar

[16] R. Venkatasubramanian, T. Colpitts, E. Watko, M. Lamvik, N.J. El-Masry, MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications, j. cryst. growth 170 (1997) 817-821.

DOI: 10.1016/s0022-0248(96)00656-2

Google Scholar

[17] Z. Nie, C.A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A.W. Martinez, M. Narovlyansky, G.M. Whitesides, Electrochemical sensing in paper-based microfluidic devices, Lab Chip 10 (2010) 477-483.

DOI: 10.1039/b917150a

Google Scholar

[18] I.Y. Erdoğan, Ü.J. Demir, Synthesis and characterization of Sb2Te3 nanofilms via electrochemical co-deposition method, J. Jelechem. 633 (2009) 253-258.

DOI: 10.1016/j.jelechem.2009.06.010

Google Scholar

[19] K. Bordo, H.G. Rubahn, Effect of deposition rate on structure and surface morphology of thin evaporated Al films on dielectrics and semiconductors, Materials Science 18 (2012) 313-317.

DOI: 10.5755/j01.ms.18.4.3088

Google Scholar

[20] E. Wallin, Alumina Thin Films: from computer calculations to cutting tools, Linköping University Electronic Press, (2008).

Google Scholar

[21] B. Lv, S. Hu, W. Li, X. Di, L. Feng, J. Zhang, L. Wu, Y. Cai, B. Li, Z.J. Lei, Preparation and characterization of Sb2Ti3 thin films by coevaporation, int. j. photoenergy 2010: 4 P. Article ID 476589.

Google Scholar

[22] P. Quintana, A. Oliva, O. Ceh, J. Corona, M.J. Aguilar, Thickness effects on aluminum thin films,Vacio 9 (1999) 280-282.

DOI: 10.1016/s0040-6090(99)00370-3

Google Scholar

[23] D. Ketenoğlu, B.J. Ünal, Influence of surface roughness on the electrical conductivity of semiconducting thin films, J. Physica A 392 (2013) 3008-3017.

DOI: 10.1016/j.physa.2013.03.007

Google Scholar

[24] B.R. Kumar, T.S. Rao, AFM Studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films, Digest J. Nanomater. Biostruct. 7 (2012) 1881-1889.

Google Scholar

[25] G. Reiss, H.J. Brückl, The influence of surface roughness on electronic transport in thin films, Surface Science 269 (1992) 772-776.

DOI: 10.1016/0039-6028(92)91347-e

Google Scholar

[26] T. Šalkus, E. Kazakevičius, J. Banys, M. Kranjčec, A. Chomolyak, Y.Y. Neimet, I.J. Studenyak, Influence of grain size effect on electrical properties of Cu6PS5I superionic ceramics, Solid State Ionics 262 (2014) 597-600.

DOI: 10.1016/j.ssi.2013.10.040

Google Scholar

[27] E.C. Espinosa, E. Rosendo, T. Díaz, A. Oliva, V. Rejon, J.J. Peña, Effects of temperature and deposition time on the RF-sputtered CdTe films preparation, Vacio 27 (2014) 15-19.

Google Scholar

[28] H. Shah, R. Jayaganthan, D.J. Kaur, Effect of sputtering pressure and temperature on DC magnetron sputtered CrN films, Surface Engineering 26 (2010) 629-637.

DOI: 10.1179/174329409x389326

Google Scholar

[29] F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator, Nano Energy 1 (2012) 328-334.

Google Scholar

[30] X. Wang, S. Niu, Y. Yin, F. Yi, Z. You, Z.L. Wang, Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low frequency water wave energy, Advanced Energy Materials 5 (2015) 1501467.

DOI: 10.1002/aenm.201501467

Google Scholar

[31] S. Rathore, S. Sharma, B.P. Swain, R.K. Ghadai, A Critical review on triboelectric nanogenerator, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2018, p.012186.

DOI: 10.1088/1757-899x/377/1/012186

Google Scholar

[32] Information on http://www.ossila.com/pages/sheet-resistance-theory.

Google Scholar

[33] L.D. Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondakor, T. Mitrelias, C.H. Barnes, J.A. Aguiar, Y. Majima, Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates, Thin Solid Films 520 (2012)6368-6374.

DOI: 10.1016/j.tsf.2012.06.043

Google Scholar

[34] V.P. Zhuze, B.V. Kurchatov, The electrical conductivity of copper oxide, Physik. Zeits. Sowjetunion 2 (1932) 453-467.

Google Scholar

[35] L.C. Olsen, F.W. Addis, W. Miller, Experimental and theoretical studies of Cu2O solar cells, Sol. Cells 7 (1982–1983) 247-279.

DOI: 10.1016/0379-6787(82)90050-3

Google Scholar

[36] N. Kikuchi, K. Tonooka, Electrical and structural properties of Ni-doped CuO films prepared by pulsed laser deposition, Thin Solids Films 486 (2005) 33-37.

DOI: 10.1016/j.tsf.2004.12.044

Google Scholar

[37] J. Xue, R. Dickmann, The non-stoichiometry and the point defect structure of cuprous oxide (Cu2−δO), J. Phys. Chem. Solids 51 (1990) 1263-1275.

DOI: 10.1016/0022-3697(90)90003-x

Google Scholar