Casting and Laser Surface Melting of 316L Stainless Steel from Scrap Resources

Article Preview

Abstract:

316L stainless steel is used in various industrial applications including chemical, biomedical and mechanical industries due to its good mechanical properties and corrosion resistance. Recycling of 316L stainless steel scrap without significantly reducing its value has received recently great attention because of the environmental regulations. In the current work, 316L stainless steel scrap was recycled via casting using Skull induction melting technique. The casted products subsequently subjected to laser surface melting process to improve its surface properties to be used for harsh environment. The results showed defect free surfaces with homogeneous microstructures. Nano size grains were also obtained due to rapid solidification process. Such nano size grains are preferred for extending the usage of the 316L stainless steel in new applications.Corresponding author: E-Mail: elgazzar.ha@gmail.com

You might also be interested in these eBooks

Info:

Periodical:

Pages:

306-316

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.D. Majumdar, A. Kumar, S. Pityana, I. Manna, Laser Surface Melting of AISI 316L Stainless Steel for Bio-implant Application, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 88 (2018) 387-403.

DOI: 10.1007/s40010-018-0524-4

Google Scholar

[2] V.K. Balla, S. Dey, A.A. Muthuchamy, G.D. Janaki Ram, M. Das, A. Bandyopadhyay, Laser surface modification of 316L stainless steel, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106 (2018) 569-577.

DOI: 10.1002/jbm.b.33872

Google Scholar

[3] C.L. Wu, S. Zhang, C.H. Zhang, J.B. Zhang, Y. Liu, J. Chen, Effects of SiC content on phase evolution and corrosion behavior of SiC-reinforced 316L stainless steel matrix composites by laser melting deposition, Optics & Laser Technology, 115 (2019) 134-139.

DOI: 10.1016/j.optlastec.2019.02.029

Google Scholar

[4] R. Meng, J. Deng, R. Duan, Y. Liu, G. Zhang, Modifying tribological performances of AISI 316 stainless steel surfaces by laser surface texturing and various solid lubricants, Optics & Laser Technology, 109 (2019) 401-411.

DOI: 10.1016/j.optlastec.2018.08.020

Google Scholar

[5] A. Hussein, S.R. Al-Sayed, S.I. Hassab Elnaby, A.A. Nofal, H. Elgazzar, Prominent Achievements of Laser Surface Treatment of Martensitic Stainless Steel and Alpha-Beta 6/4 Titanium Alloy, in: Key Engineering Materials, Trans Tech Publ, 2018, pp.87-97.

DOI: 10.4028/www.scientific.net/kem.786.87

Google Scholar

[6] S.R. Al-Sayed, A.A. Hussein, A.A. Nofal, S.I. Hassab Elnaby, H. Elgazzar, Characterization of a laser surface-treated martensitic stainless steel, Materials, 10 (2017).

DOI: 10.3390/ma10060595

Google Scholar

[7] S.R.A.S. Ali, A.H.A. Hussein, A.A.M.S. Nofal, S.E.I.H. Elnaby, H.A. Elgazzar, H.A. Sabour, Laser powder cladding of Ti-6Al-4V α/β alloy, Materials, 10 (2017).

DOI: 10.3390/ma10101178

Google Scholar

[8] S. Mohammadzadeh Asl, M. Ganjali, M. Karimi, Surface modification of 316L stainless steel by laser-treated HA-PLA nanocomposite films toward enhanced biocompatibility and corrosion-resistance in vitro, Surface and Coatings Technology, 363 (2019) 236-243.

DOI: 10.1016/j.surfcoat.2019.02.052

Google Scholar

[9] X.-Y. Zhang, Y. Zou, X.-L. Zeng, Effect of Laser Surface Remelting on the Corrosion Resistance of 316L Orthodontic Brackets, international journal of electrochemical science, 11 (2016) 2877-2886.

DOI: 10.20964/110402877

Google Scholar

[10] H.A. Elgazzar, H.G. Salem, T.M. Mattar, A.M. Hassan, E. Abdel-Rahman, Characterization of structures and properties of amorphous nanostructured SiC thin films deposited on AISI 304 stainless steel using pulsed laser deposition, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 227 (2013) 199-207.

DOI: 10.1177/1740349912462786

Google Scholar

[11] A. Mahapatro, Bio-functional nano-coatings on metallic biomaterials, Materials Science and Engineering: C, 55 (2015) 227-251.

DOI: 10.1016/j.msec.2015.05.018

Google Scholar

[12] C. Cui, J. Hu, Y. Liu, K. Gao, Z. Guo, Formation of nano-crystalline and amorphous phases on the surface of stainless steel by Nd: YAG pulsed laser irradiation, Applied Surface Science, 254 (2008) 6779-6782.

DOI: 10.1016/j.apsusc.2008.04.069

Google Scholar

[13] C.T. Kwok, F.T. Cheng, H.C. Man, W.H. Ding, Corrosion characteristics of nanostructured layer on 316L stainless steel fabricated by cavitation-annealing, Materials Letters, 60 (2006) 2419-2422.

DOI: 10.1016/j.matlet.2006.01.053

Google Scholar

[14] A. Nofal, H. El-Gazzar, M. Ibrahim, Metallographic investigation of Nd: YAG laser processed ductile iron surfaces, in: 10 Th International Symposium on the Science and Processing of Cast Iron, INTEMA - UNMdP-CONICET, Argentina, (2014).

Google Scholar

[15] T. Mattar, E.A. Rahman, A. Abdel-Aziz, H. El-Gazzar, Development of nano-structured aluminum surfaces by LSM, in: Proceedings of the ASME 2nd Multifunctional Nanocomposites and Nanomaterials Conference, MN2008, 2008, pp.121-128.

DOI: 10.1115/mn2008-47059

Google Scholar

[16] R. Vilar, A. Almeida, Laser surface treatment of biomedical alloys, in: Laser Surface Modification of Biomaterials, Woodhead Publishing, 2016, pp.35-75.

DOI: 10.1016/b978-0-08-100883-6.00002-2

Google Scholar

[17] A. Bandyopadhyay, H. Sahasrabudhe, S. Bose, Laser surface modification of metallic biomaterials A2 - Vilar, Rui, in: Laser Surface Modification of Biomaterials, Woodhead Publishing, 2016, pp.175-195.

DOI: 10.1016/b978-0-08-100883-6.00006-x

Google Scholar

[18] Information on http://www.consarc.com.

Google Scholar

[19] J.E. Sopcak, Handbook of Lost Wax Or Investment Casting, Gem Guides Book Company, (1986).

Google Scholar

[20] R. Vilar, 10.07 - Laser Powder Deposition in: G.F. Batalha, C.J.V. Tyne, B. Yilbas (Eds.) Comprehensive Materials Processing, Elsevier, Oxford, 2014, pp.163-216.

DOI: 10.1016/b978-0-08-096532-1.01005-0

Google Scholar

[21] C.T. Kwok, H.C. Man, F.T. Cheng, K.H. Lo, Developments in laser-based surface engineering processes: with particular reference to protection against cavitation erosion, Surface and Coatings Technology, 291 (2016) 189-204.

DOI: 10.1016/j.surfcoat.2016.02.019

Google Scholar

[22] K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Hardened austenite steel with columnar sub-grain structure formed by laser melting, Materials Science and Engineering: A, 625 (2015) 221-229.

DOI: 10.1016/j.msea.2014.12.018

Google Scholar

[23] R. Singh, M. Martin, N.B. Dahotre, Influence of laser surface modification on corrosion behavior of stainless steel 316L and Ti–6Al–4V in simulated biofluid, Surface Engineering, 21 (2005) 297-306.

DOI: 10.1179/174329405x55320

Google Scholar

[24] P. Peyre, C. Carboni, P. Forget, G. Beranger, C. Lemaitre, D. Stuart, Influence of thermal and mechanical surface modifications induced by laser shock processing on the initiation of corrosion pits in 316L stainless steel, Journal of materials science, 42 (2007) 6866-6877.

DOI: 10.1007/s10853-007-1502-4

Google Scholar

[25] C. Carboni, P. Peyre, G. Beranger, C. Lemaitre, Influence of high power diode laser surface melting on the pitting corrosion resistance of type 316L stainless steel, Journal of materials science, 37 (2002) 3715-3723.

DOI: 10.2351/1.5059895

Google Scholar