Effect of Metallurgical Waste Properties on Determining Suitable Recycling Method

Article Preview

Abstract:

Recycling of solid waste generated from metallurgical industries will avoid disposal of wastes, enhance the use of secondary raw material fines and save costs. Numerous hydrometallurgical and pyrometallurgical processes, or a combination of both, have been proposed for the utilization of metallurgical waste. Due to insufficient knowledge of the properties of these wastes, most of these attempts still have some technical difficulties. Investigation the properties of metallurgical waste is needed before choosing the suitable recycling process.The present work describes the chemical, morphological and mineralogical properties of blast furnace sludge (BFS) and basic oxygen furnace sludge (BOFS) produced in steel plants in Finland. The investigations indicated that BFS and BOFS show significant contents of iron and coke. The sludges also contain considerable concentrations of unwanted elements such as Zn. The authors propose that microwave dezincing followed by briquetting or pelletization represent a potential method for sludges recycling. Owing to high Fe and C content it can be utilized as self-reducing material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

297-305

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.G. Machado, F.A. Brehm, C.A. Moraes, C.A. Santos, A.C. Vilela, J.B. Cunha, Chemical, physical, structural and morphological characterization of the electric arc furnace dust, J. Hazard. Mater. 136 (3) (2006) 953-960.

DOI: 10.1016/j.jhazmat.2006.01.044

Google Scholar

[2] T. Mansfeldt, R. Dohrmann, Chemical and mineralogical characterization of blast furnace sludge from an abandoned landfill, Environ. Sci. Technol. 38 (22) (2004) 5977-5984.

DOI: 10.1021/es040002+

Google Scholar

[3] J. Szekely, A Research Program for the Minimization and Effective Utilization of Steel Plant Wastes, Iron and Steelmaker 22 (1) (1995) 25-29.

Google Scholar

[4] M.V. Cantarino, C. Filho, M.B. Mansur, Selective removal of zinc from basic oxygen furnace sludges, Hydrometallurgy 111-112 (2012) 124-128.

DOI: 10.1016/j.hydromet.2011.11.004

Google Scholar

[5] P. Van Herck, C. Vandecasteele, R. Swennen, R. Mortier, Zinc and lead removal from blast furnace sludge with a hydrometallurgical process, Environ. Sci. Technol. 34 (17) (2000) 3802-3808.

DOI: 10.1021/es991033l

Google Scholar

[6] Z.H. Trung, F. Kukurugya, Z. Takacova, D. Orac, M. Laubertova, A. Miskufova, T. Havlik, Acidic leaching both of zinc and iron from basic oxygen furnace sludge, J. Hazard. Mater. 192 (3) (2011) 1100-1107.

DOI: 10.1016/j.jhazmat.2011.06.016

Google Scholar

[7] Environmental Protection Agency, 2002, European Waste Catalogue and Hazardous Waste List.

Google Scholar

[8] C. Wang, R. Jennes, O. Mattila, T. Paananen, J. Lilja, M. Larsson, Investigation of applying OxyCup® process for an integrated steel plant from a Nordic country, Düsseldorf, 15-19 June (2015).

Google Scholar

[9] M. Omran, T. Fabritius, Improved removal of zinc from blast furnace sludge by particle size separation and microwave heating, Miner. Eng. 127 (2018) 265-276.

DOI: 10.1016/j.mineng.2018.08.002

Google Scholar

[10] M. Omran, T. Fabritius, T. Paananen, Effect of blast furnace sludge (BFS) characteristics on suitable recycling process determining, JMMCE 5 (2017) 185-197.

DOI: 10.4236/jmmce.2017.54016

Google Scholar

[11] R. Kretzschmar, T. Mansfeldt, P.N. Mandaliev, K. Barmettler, M.A. Marcus, A. Voegelin, Speciation of Zn in Blast Furnace Sludge from Former Sedimentation Ponds Using Synchrotron X-ray Diffraction, Fluorescence, and Absorption Spectroscopy, Environ. Sci. Technol. 46 (2012)12381-12390.

DOI: 10.1021/es302981v

Google Scholar

[12] J. Vereš, M. Lovás, Š. Jakabský, V. Šepelák, S. Hredzák, Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction, Hydrometallurgy 129-130 (2012) 67-73.

DOI: 10.1016/j.hydromet.2012.09.008

Google Scholar

[13] K. Drobíková, D. Plachá, O. Motyka, R. Gabor, K.M. Kutláková, S. Vallová, J. Seidlerová, Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel, Waste Manag. 48 (2016) 471-477.

DOI: 10.1016/j.wasman.2015.11.047

Google Scholar

[14] R. Robinson, Studies in low temperature self-reduction of by-products from integrated iron and steelmaking, DIVA, (2008).

Google Scholar

[15] B. Das, S. Prakash, P.S.R. Reddy, V.N. Misra, An overview of utilization of slag and sludge from steel industries, Res. Conserv. Recycling 50 (1) (2007) 40-57.

DOI: 10.1016/j.resconrec.2006.05.008

Google Scholar

[16] A. Persson, H. Ahmed, Energy efficient recycling of in-plant fines in rotary Hearth Furnace, 2014, Sweden.

Google Scholar

[17] A. Andersson, H. Ahmed, J. Rosenkranz, C. Samuelsson, B. Björkman, Characterization and Upgrading of a Low Zinc-Containing and Fine Blast Furnace Sludge - A Multi-Objective Analysis, ISIJ Int. 57 (2017) 262-271.

DOI: 10.2355/isijinternational.isijint-2016-512

Google Scholar

[18] S. Kelebek, S. Yörük, B. Davis, Characterization of basic oxygen furnace dust and zinc removal by acid leaching, Miner. Eng. 17 (2004) 285-291.

DOI: 10.1016/j.mineng.2003.10.030

Google Scholar

[19] J. Vereš, Š. Jakabský, V. Šepelák, Chemical, physical, morphological and structural characterization of blast furnace sludge, Diffusion Fundamental 12 (2010) 88-91.

Google Scholar

[20] A.J.B. Dutra, P.R.P. Paiva, L.M. Tavares, Alkaline leaching of zinc from electric arc furnace steel dust, Miner. Eng. 19 (2006)478-485.

DOI: 10.1016/j.mineng.2005.08.013

Google Scholar

[21] R.K. Agrawal, P.K. Pandey, Productive recycling of basic oxygen furnace sludge in integrated steel plant, J. Sci. Ind. Res. 64 (2005) 702-706.

Google Scholar

[22] A.K.P. Singh, M.T. Raju, U. Jha, Recycling of Basic Oxygen Furnace (BOF) sludge in iron and steel works, Int. J. Environ. Tech. Manag. 14 (2011)19-32.

DOI: 10.1504/ijetm.2011.039255

Google Scholar

[23] D.E. Esezobor, S.A. Balogun, Zinc accumulation during recycling of iron oxides wastes in the blast furnaces, Ironmak. Steelmak. 33 (2006) 419-425.

DOI: 10.1179/174328106x114020

Google Scholar

[24] S. Cho, J. Lee, Metal Recovery from Stainless Steel Mill Scale by Microwave Heating, Met. Mater. Inter. 14 (2008) 193-196.

DOI: 10.3365/met.mat.2008.04.193

Google Scholar

[25] M. Omran, T. Fabritius, Treatment of blast furnace sludge (BFS) using a microwave heating technique, Ironmak. Steelmak. 43 (2016)1-11.

DOI: 10.1080/03019233.2016.1224032

Google Scholar

[26] K. Nishioka, T. Maeda, M. Shimizu, Dezincing Behavior from Iron and Steelmaking Dusts by Microwave Heating, ISIJ Int. 42 (2002) S19-S22.

DOI: 10.2355/isijinternational.42.suppl_s19

Google Scholar

[27] K. Morita, M. Guo, N. Oka, N. Sano, Resurrection of the Iron and Phosphorus Resource in Steel-making Slag, J Mater. Cycles Waste 4 (2002) 93-101.

Google Scholar