Structural, Microstructural and Electrochemical Studies of Co/Mn Derived Oxides as Protective Layers for Intermediate Temperature SOFCs

Article Preview

Abstract:

Abstract. Designing highly protective and superior electrically conductive coatings from Cobalt-manganese doped/un-doped oxide materials (CMOs) is the main target of this study. The as-prepared nanopowders were synthesized via glycine nitrate process (GNP) at moderate annealing temperature afterword characterized using several techniques including X-rays diffraction (XRD), Field emission scanning electron microscopy (FE-SEM) and electrochemical impedance measurements at room temperature. The XRD results revealed a pure phase of spinel structure with particle size range 75-81 nm for the doped CMO samples. SEM micrographs exhibited morphology with fine aggregate of particles. The incorporation of different ions of Cu, Ni, Fe and Na into the CMOs structure showed a significant increase in the diffusivity of ions and remarkable improvement in the crystallinity. AC electrical conductivity was also measured for the compacted pellets after sintering at 850°C using the electrochemical impedance spectroscopy technique at room temperature. From the obtained results it could be concluded that the polarization resistance of pure and modified CMOs samples show similar behavior ranged from 5 to 6 k Ω.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

353-358

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[2] S. McIntosh, J. Raymond Gorte, Direct hydrocarbon solid oxide fuel cells‏,, Chem. Rev., 2004; 104:4845−4865‏.

DOI: 10.1021/cr020725g

Google Scholar

[3] WZ. Zhu and SC. Deevi, Development of interconnect materials for solid oxide fuel cells‏,, Mater Sci Eng A, 2003; 348:227-43‏.

Google Scholar

[4] E. Ivers-Tiffee, W. Wersing, M. Schiebl, H. Greiner, Ceramic and metallic components for a planar SOFC‏,, Ber Bunsen-Ges Phys Chem, 1990; 94:978–981‏.

Google Scholar

[5] ‏ ‏ H.P. Buchkremer, U. Diekmann, L.G.J. de Haart, H. Kabs, U. Stimming, D. Stover, in: U. Stimming, S.C. Singhal, H. Tagawa, W. Lehnert (Eds.), Proc. 5th Int. Symp. Solid Oxide Fuel Cells‏,, The Electrochemical Society, Pennington, NJ, 1997, p.160‏.

Google Scholar

[6] W.J. Quadakkers, H. Greiner, M. Hansel, A. Patlanaik, A.S. Khanna, M. Mallener, Compatibility of perovskite contact layers between cathode and metallic interconnector plates of SOFCs‏,, Solid State Ionics; 1996; 91: 55-67‏.

DOI: 10.1016/s0167-2738(96)00425-0

Google Scholar

[7] Z.G. Yang, K.S. Weil, D.M. Paxton, J.W. Stevenson, Selection and evaluation of heat-resistant alloys for SOFC interconnect applications‏,, J. Electrochem. Soc. 2003; (9) 150:A1188-A1201‏.

DOI: 10.1149/1.1595659

Google Scholar

[8] H. Ebrahimifar, M. Zandrahimi, Mn coating on AISI 430 ferritic stainless steel by pack cementation method for SOFC interconnect applications‏,, Solid State Ionics., 2011; (1) 183: 71-79‏.

DOI: 10.1016/j.ssi.2010.12.017

Google Scholar

[9] Azza Ahmed, Mohamed K. El-Fawakhry, Mamdouh Eissa and Taha Mattar, Thermal compatibility of chromium steel as metallic interconnects for solid oxide fuel cells‏,, Journal of Basic and Applied Research International, 2016, Volume 14, Issue 2, pp.90-100.

Google Scholar

[10] S. Taniguchi, M. Kadowaki, H. Kawamura, T. Yasuo, Y. Akiyama, Y. Miyake, T. Saitoh, Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator‏,, J. Power Sources., (1995) 55: 73-79‏.

DOI: 10.1016/0378-7753(94)02172-y

Google Scholar

[11] K. Hilpert, D. Das, M. Miller, D.H. Peck, R. Weiss, Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes‏,, J. Electrochem. Soc., 1996; 143: 3642–3647‏.

DOI: 10.1149/1.1837264

Google Scholar

[12] S. P. S. Badwal, R. Deller, K. Foger, Y. Ramprakash, J. P. Zhang, Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells‏,, Solid State Ionics, 1997; 99: 297-310‏.

DOI: 10.1016/s0167-2738(97)00247-6

Google Scholar

[13] ‏ ‏ Y.J. Xu, Z.Y. Wen, S.R. Wang, T.L. Wen, Cu doped Mn–Co spinel protective coating on ferritic stainless steels for SOFC interconnect applications", Solid State Ionics‏,, 2011; (1) 192: 561-564‏.

DOI: 10.1016/j.ssi.2010.05.052

Google Scholar

[14] N. Orlovskaya, A. Coratolo, C. Johnson, R. Gemmen, Structural characterization of lanthanum chromite perovskite coating deposited by magnetron sputtering on an iron-based chromium-containing alloy as a promising interconnect material for SOFCs‏,, J Am Ceram Soc., 2004; 87:1981-7‏.

DOI: 10.1111/j.1151-2916.2004.tb06350.x

Google Scholar

[15] C. Monterrubio-Badillo, H. Ageorges, T. Chartier, P. Coudert Fauchais, Preparation of LaMnO perovskite thin films suspension plasma spraying for SOFC cathodes‏,, Surf Coat Technol., 2006; 200:3743-56‏.

DOI: 10.1016/j.surfcoat.2005.01.002

Google Scholar

[16] Z. Yang, X. Guan-Guang, X.Hong Li, and W. Jeffry Stevenson, (Mn, Co)3 O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications,, International Journal of Hydrogen Energy, 2007; (32) 16 : 3648-3654‏.

DOI: 10.1016/j.ijhydene.2006.08.048

Google Scholar

[17] H. Bin, K.YongHong, L.FengShuang, Z. Jian Fu, P. Jian, and L. Jian, The electrical property of MnCo2O4 and its application for SUS 430 metallic interconnect,, Chinese Science Bulletin., 2010; (55) 33: 3831-3837‏.

DOI: 10.1007/s11434-010-3161-0

Google Scholar

[18] P. Paknahad, M. Askari, M. Ghorbanzadeh, Application of solegel technique to synthesis of copperecobalt spinel on the ferritic stainless steel used for solid oxide fuel cell interconnects‏,, Journal of Power Sources, 2014; 266: 79-87‏.

DOI: 10.1016/j.jpowsour.2014.04.122

Google Scholar

[19] PV. Hendriksen, L. Mikkelsen, AH. Persson, Mechanisms Interaction between slurry coating and solid oxide fuel cell interconnect alloys during high temperature oxidation‏,, Journal of Alloys and Compounds, 2012; (0) 521: 16-29‏.

DOI: 10.1016/j.jallcom.2011.12.095

Google Scholar

[20] C. Jong-Jin, R. Jungho,H. Byung-Dong,Y. Woon-Ha,L. Byoung-Kuk, and P. Dong-Soo, Dense spinel MnCo2O4 film coating by aerosol deposition on ferritic steelalloy for protection of chromic evaporation and low-conductivity scale formation‏,, Journal of Materials Science. 2009; (44) 3: 843-848‏.

DOI: 10.1007/s10853-008-3132-x

Google Scholar

[21] H. Zhang, Z. Zhaolin, and L. Xingbo, Electrophoretic deposition of (Mn, Co)3O4 spinel coating for solid oxide fuel cell interconnects‏,, Journal of Power Sources, 2011; (196) 19:8041-8047.

DOI: 10.1016/j.jpowsour.2011.05.053

Google Scholar