Mechanical and Shrinkage Behaviors of Ductile Fiber-Reinforced Polymer Repair Mortar

Article Preview

Abstract:

Repair mortar (RM) with dense texture and high anti-crack is cost-effective for application onto the surface of concrete structure to effectively delay the detachment of concrete protective layer and the corrosion of steel bars. Here, the effects of ductile fiber and polymer latex on the flexural strength (ft), compressive strength (fc), bond strength (fb), and shrinkage rate (δr) of fiber-reinforced polymer repair mortar (FP-RM) were comprehensively studied. Results show, the individual doping of polymer latex can improve the ft, fb, and the toughness (the ft/fc ratio) of P-RM, and the fb is increased by 75.78% with respect to the plain mortar, which imply polymer ingredient is essential to P-RM. Some ductile fibers individual dosage also can enhance the ft, fc, and δr of F-RM, respectively; When the polymer latex and ductile fiber are simultaneously doped into the FP-RM mortar together, the ft and fb of FP-RM can be increased up to 9.4MPa, and 2.52MPa, respectively, in tandem with 40.54% reduction of δr, showing superior synergy effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-19

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Ohama, Handbook of Polymer Modified Mortar and Mortars, Noyes Publications, Ann Arbor, MI, USA, (1995).

Google Scholar

[2] S. Pascal, A. Alliche, Ph. Pilvin, Mechanical behaviour of polymer modified mortars, Mater. Sci. Eng. A. 380 (2004) 1-8.

DOI: 10.1016/j.msea.2004.03.049

Google Scholar

[3] M. I. Khan, Ring test for the measurement of restrained shrinkage of concrete, Appl. Mech. Mater. 377 (2013) 86-91.

Google Scholar

[4] L. Yan, N. Chouw, L. Huang, B. Kasal, Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites, Constr. Build. Mater. 112 (2016) 168-182.

DOI: 10.1016/j.conbuildmat.2016.02.182

Google Scholar

[5] X. M. Kong, C. C. Wu, Y. R. Zhang, J. L. Li, Polymer modified mortar with gradient polymer distribution: preparation, permeability, and mechanical behavior, Constr. Build. Mater. 38 (2013) 195-203.

DOI: 10.1016/j.conbuildmat.2012.07.080

Google Scholar

[6] S. Chakraborty, S. P. Kundu, A. Roy, B. Adhikari, S. B. Majumder, Polymer modified jute fibre as reinforcing agent controlling the physical and mechanical characteristics of cement mortar, Constr. Build. Mater. 49 (2013) 214-222.

DOI: 10.1016/j.conbuildmat.2013.08.025

Google Scholar

[7] E. Knapen, D. Van Gemert, Polymer film formation in cement mortars modified with water-soluble polymers, Cem. Concr. Compos. 58 (2015) 23-28.

DOI: 10.1016/j.cemconcomp.2014.11.015

Google Scholar

[8] B. Huang, H. Wu, X. Shu, E. G. Burdette, Laboratory evaluation of permeability and strength of polymer-modified pervious concrete, Constr. Build. Mater. 24 (2009) 818-823.

DOI: 10.1016/j.conbuildmat.2009.10.025

Google Scholar

[9] J. L. Luo, Q. Y. Li, T. J. Zhao, S. Gao, S. W. Sun, Bonding and toughness properties of PVA fibre reinforced aqueous epoxy resin cement repair mortar, Constr. Build. Mater. 49 (2013) 766-771.

DOI: 10.1016/j.conbuildmat.2013.08.052

Google Scholar

[10] J. Schulze, O. Killermann, Long-term performance of redispersible powders in mortars, Cem. Concr. Res. 31 (2001) 357-361.

DOI: 10.1016/s0008-8846(00)00498-1

Google Scholar

[11] J. L. Luo, C. W. Zhang, L. Li, B. L. Wang, Q. Y. Li, K. L. Chung, C. Liu, Intrinsic sensing properties of chrysotile fiber reinforced piezoelectric cement-based composites, Sensors, 18 (2018) 2999-3008.

DOI: 10.3390/s18092999

Google Scholar

[12] J. M. L. Reis, Fracture and flexural characterization of natural fiber-reinforced polymer concrete, Constr. Build. Mater. 20 (2006) 673-678.

DOI: 10.1016/j.conbuildmat.2005.02.008

Google Scholar