[1]
D. Berman, A. Erdemir, A. V. Sumant, Graphene: a new emerging lubricant, Mater. Today, 17 (2014) 31-42.
DOI: 10.1016/j.mattod.2013.12.003
Google Scholar
[2]
S. Qi, X. Li, H. Dong, Improving the macro-scale tribology of monolayer graphene oxide coating on stainless steel by a silane bonding layer, Mater. Lett. 209 (2017).
DOI: 10.1016/j.matlet.2017.07.087
Google Scholar
[3]
Z. Shi, P. Shum, A. Wasy, Z. Zhou, K. Y. Li, Tribological performance of few layer graphene on textured M2 steel surfaces, Surf. Coat. Technol. 296 (2016) 164-170.
DOI: 10.1016/j.surfcoat.2016.04.031
Google Scholar
[4]
L. Y. Lin, D. E. Kim, W. K. Kim, S. C. Jun, Friction and wear characteristics of multi-layer graphene films investigated by atomic force microscopy, Surf. Coat. Technol. 205 (2011) 4864-4869.
DOI: 10.1016/j.surfcoat.2011.04.092
Google Scholar
[5]
J. C. Spear, B. W. Ewers, J. D. Batteas, 2D-nanomaterials for controlling friction and wear at interfaces, Nano Today, 10 (2015) 301-314.
DOI: 10.1016/j.nantod.2015.04.003
Google Scholar
[6]
W. Zhai, N. Srikanth, L. B. Kong, K. Zhou, Carbon nanomaterials in tribology, Carbon. 119 (2017) 150-171.
DOI: 10.1016/j.carbon.2017.04.027
Google Scholar
[7]
X. Zeng, Y. Peng, H. Lang, A novel approach to decrease friction of graphene, Carbon. 118 (2017) 233-240.
DOI: 10.1016/j.carbon.2017.03.042
Google Scholar
[8]
Y. Peng, Z. Wang, K. Zou, Friction and Wear Properties of Different Types of Graphene Nanosheets as Effective Solid Lubricants, Langmuir, 31 (2015) 7782-7791.
DOI: 10.1021/acs.langmuir.5b00422
Google Scholar
[9]
K. S. Kim, H. J. Lee, C. G. Lee, et al. Chemical vapor deposition-grown graphene: the thinnest solid lubricant, Acs Nano, 5(6) (2011) 5107-5114.
DOI: 10.1021/nn2011865
Google Scholar
[10]
M. S. Won, O. V. Penkov, D. E. Kim, Durability and degradation mechanism of graphene coatings deposited on Cu substrates under dry contact sliding, Carbon. 54 (2013) 472-481.
DOI: 10.1016/j.carbon.2012.12.007
Google Scholar
[11]
S. Chen, B. Shen, F. Sun, The influence of normal load on the tribological performance of electrophoretic deposition prepared graphene coating on micro-crystalline diamond surface, Diam. Relat. Mat. 76 (2017) 50-57.
DOI: 10.1016/j.diamond.2017.04.008
Google Scholar
[12]
Z. Yuan, Y. He, K. Cheng, Z. Duan, L. Wang, Effect of self-developed graphene lubricant on tribological behaviour of silicon carbide/silicon nitride interface, Ceram. Int. 45 (2019) 10211-10222.
DOI: 10.1016/j.ceramint.2019.02.073
Google Scholar
[13]
S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability and surface free energy of graphene films, Langmuir, 25 (2009) 11078-11081.
DOI: 10.1021/la901402f
Google Scholar
[14]
A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. D'Urso, H. Liu, L. Li, Study on the surface energy of graphene by contact angle measurements, Langmuir, 30 (2014) 8598-8606.
DOI: 10.1021/la5018328
Google Scholar
[15]
Bhushan, Bharat, Modern Tribology Handbook, CRC Press, (2001).
Google Scholar
[16]
X. He, Q. Bai, R. Shen, Atomistic perspective of how graphene protects metal substrate from surface damage in rough contacts, Carbon. 130 (2018).
DOI: 10.1016/j.carbon.2018.01.023
Google Scholar