Corrosion Resistance Analysis of ST37 Carbon Steel Material Using Phosphate Conversion Coating in Various Immersion Durations

Article Preview

Abstract:

Conversion coating in metal material was a method to control the corrosion. It applied in parts of car, aircraft, factory installation, and other appliances. There were three types of conversion coating: phosphate conversion coating, chromate conversion coating, and oxalate conversion coating. There were several aspects to consider in controlling the corrosion fully. This research used phosphate because phosphate conversion coating had a low corrosion rate, affordable production cost, and environmentally friendly. This research aimed to find out the corrosion resistance of ST37 carbon steel using phosphate conversion coating in various immersion durations. Therefore, the result was a breakthrough in using phosphate conversion coating for the industries. This research used the weight loss method to calculate the corrosion rate and macro photos to obtain the corrosion form during the test. This research used ST37 carbon steel with 100 mm x 30 mm x 10 mm as the specimen and phosphate with various coating durations (10, 20, and 30 minutes). Each variation had three specimens, so this research had nine specimens in total. This research calculated the daily corrosion rate for seven days using 5% NaCl as the corrosion solution. The average corrosion rate in specimens with 10 minutes duration was 1.9599 mpy, specimens with 20 minutes immersion was 1.7647 mpy, whereas specimens with 30 minutes duration were 1.3287 mpy. Thus, the longer immersion duration created a smaller corrosion rate. Also, the corrosion formed during the test was pitting and uniform corrosion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-67

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Afandi, Y. K., & Arief, I. S. 2015. Analisa Laju Korosi pada Pelat Baja Karbon dengan Variasi Ketebalan Coating. Journal Of Corrosion Science, 4(1), 1–5.

Google Scholar

[2] Anggaretno, G., Rochania, I., & Supomo, H. 2012. Analisa Pengaruh Jenis Elektroda terhadap Laju Korosi pada Pengelasan Pipa API 5L Grade X65. Jurnal Teknik Mesin, 1(1), 3–7.

DOI: 10.36289/jtmi.v17i2.378

Google Scholar

[3] Asadi, V., Danaee, I., & Eskandari, H. 2015. The Effect of Immersion Time and Immersion Temperature on the Corrosion Behavior of Zinc Phosphate Conversion Coatings on Carbon Steel. Journal Of Coating Corrosion, 18(4), 706–713.

DOI: 10.1590/1516-1439.343814

Google Scholar

[4] Asemani, H. R., Ahmadi, P., Sarabi, A. A., & Mohammadloo, H. E. 2016. Progress in Organic Coatings Effect Of Zirconium Conversion Coating : Adhesion And Anti-Corrosion Properties Of Epoxy Organic Coating containing Zinc Aluminum Polyphosphate ( ZAPP ) Pigment On Carbon Mild Steel. Journal Of Progress in Organic Coatings, 94, 18–27. https://doi.org/10.1016/j.porgcoat.2016.01.015.

DOI: 10.1016/j.porgcoat.2016.01.015

Google Scholar

[5] Bardal, E. 2003. Corrosion and Protection. London: Springer UK.

Google Scholar

[6] Chen, X., Zhou, X., Abbott, T. B., Easton, M. A., & Birbilis, N. (2013). Surface & Coatings Technology Double-layered Manganese Phosphate Conversion Coating on Magnesium Alloy AZ91D : Insights into Coating Formation, Growth and Corrosion Resistance. Journal Of Surface & Coatings Technology, 217, 147–155. https://doi.org/10.1016/j.surfcoat.2012.12.005.

DOI: 10.1016/j.surfcoat.2012.12.005

Google Scholar

[7] Chen, Z., Zhang, G., & Yang, E. 2018. Electrochimica Acta Study of Steel Corrosion in Strain-hardening Cementitious Composites ( SHCC ) Via Electrochemical Techniques. Journal Of Electrochimica Acta, 261, 402–411. https://doi.org/10.1016/j.electacta.2017.12.170.

DOI: 10.1016/j.electacta.2017.12.170

Google Scholar

[8] Gunawan, E. 2017. Pengaruh Temperatur Pada Proses Perlakuan Panas Baja Tahan Karat Martensitik AISI 431. Jurnal Teknik Mesin, 1, 55–66.

DOI: 10.51804/tesj.v1i1.69.55-66

Google Scholar

[9] Hagans, P. L., & Haas, C. M. 1994. Chromate Conversion Coatings. Journal Of Chemical Engineering Science, 5, 38–76. https://doi.org/10.1361/asmhba000.

Google Scholar

[10] Jagtap, R. N., Patil, P. P., & Hassan, S. Z. 2008. Effect Of Zinc Oxide In Combating Corrosion In Zinc-Rich Primer. Journal Of Coating Corrosion, 2. https://doi.org/10.1016/j.porgcoat.2008.06.012.

DOI: 10.1016/j.porgcoat.2008.06.012

Google Scholar

[11] Jegannathan, S., Arumugam, T. K., Narayanan, T. S. N. S., & Ravichandran, K. 2009. Formation And Characteristics Of Zinc Phosphate Coatings Obtained by Electrochemical Treatment: Cathodic vs. Anodic. Journal Of Progress in Organic Coatings, 65(2), 229–236. https://doi.org/10.1016/j.porgcoat.2008.11.009.

DOI: 10.1016/j.porgcoat.2008.11.009

Google Scholar

[12] Jones, F. N. 2017. Organic Coatings Science and Technology. United States of America: John Wiley & Sons, Inc.

Google Scholar

[13] Julisman. 2015. Analisa Sifat Mekanik Permukaan Baja St 37 dengan Proses Pack Carburizing Menggunakan Arang Kelapa Sawit Sebagai Media Karbon Padat. Jurnal Material, 6, 15–29.

DOI: 10.36040/flywheel.v12i2.4280

Google Scholar

[14] Kusuma, A. 2005. Pengaruh Lapisan Baja Berdasarkan Sifat Elektrokimia Bahan Pelapis. Journal Of Chemical Engineering Science, 2, 23–31.

Google Scholar

[15] Mahidashti, Z., Shahrabi, T., & Ramezanzadeh, B. 2016. Applied Surface Science A New Strategy For Improvement Of The Corrosion Resistance Of A Green Cerium Conversion Coating Through Thermal Treatment Procedure Before And After Application Of Epoxy Coating. Journal Of Applied Surface Science, 390, 623–632. https://doi.org/10.1016/j.apsusc.2016.08.160.

DOI: 10.1016/j.apsusc.2016.08.160

Google Scholar

[16] Miskovic, D. M., Pohl, K., Birbilis, N., Laws, K. J., & Ferry, M. 2017. Formation of a Phosphate Conversion Coating On Bioresorbable Mg-Based Metallic Glasses And Its Effect On Corrosion Performance. Journal Of Corrosion Science, 129, 214–225. https://doi.org/10.1016/j.corsci.2017.10.014.

DOI: 10.1016/j.corsci.2017.10.014

Google Scholar

[17] Morkoc, H., & Ozgur, U. 2009. General Properties of ZnO. Journal Of Chemical Properties, 3, 127–145.

Google Scholar

[18] Narayanan, T. S. N. S. 2005. Surface Pretreatment by Phosphate Conversion Coatings – A Review . 9, 130–177.

Google Scholar

[19] Nogara, J., & Zarrouk, S. J. 2017. Corrosion in Geothermal Environment Part 2 : Metals and alloys. Journal Of Renewable and Sustainable Energy Reviews, 1–17. https://doi.org/10.1016/j.rser.2017.06.091.

DOI: 10.1016/j.rser.2017.06.091

Google Scholar

[20] Parhizkar, N., Shahrabi, T., & Ramezanzadeh, B. 2017. A New Approach for Enhancement of the Corrosion Protection Properties and Interfacial Adhesion Bonds between the Epoxy Coating and Steel Substrate through Surface Treatment by Covalently Modified Amino-Functionalized Graphene Oxide Film. Journal Of Organic Coating, 75, 11–14. https://doi.org/10.1016/j.corsci.2017.04.011.

DOI: 10.1016/j.corsci.2017.04.011

Google Scholar

[21] Phuong, N. Van, & Moon, S. 2014. Comparative Corrosion Study Of Zinc Phosphate And Magnesium Phosphate Conversion Coatings On AZ31 Mg Alloy. Journal Of Materials Letters, 122, 341–344. https://doi.org/10.1016/j.matlet.2014.02.065.

DOI: 10.1016/j.matlet.2014.02.065

Google Scholar

[22] Pokorny, P., Tej, P., & Szelag, P. 2016. Chromate Conversion. Journal Of Coating Conversion, 55(2), 253–256.

Google Scholar

[23] Pratama, T. L., & R, T. N. 2015. Pengaruh Variasi Goresan Lapis Lindung dan Variasi pH Tanah terhadap Arus Proteksi Sistem Impressed Current Cathodic Protection (ICCP) pada Pipa API 5L Grade B. Journal Of Coating Corrosion, 4(1), 3–7.

DOI: 10.20885/teknoin.vol21.iss1.art8

Google Scholar