Measuring the Influence of Process Parameter on CuCr Electrode Tool Wear Rate for Biocompatible Zr-Based BMG Cutting Using Sinking-EDM

Article Preview

Abstract:

Subsequent processing through machining for biocompatible Zr-based BMG previously developed is needed in order to enlarge the material application, especially for medical devices. In this study the performance of CuCr tool on EDM process was investigated to cut biocompatible Zr-based BMG having low machinability nature. The experiment utilized volume loss technique to measure the TWR and consecutive SEM observation to reveal the tool wear mechanism of selected tool samples. The tool wear behavior was strongly characterized by the combination of discharge current and pulse-on time, where the larger TWR obtained by higher current and shorter pulse-on time. By SEM analysis, the irregular-shaped surface morphology with the presence of debris was observed on the tool wear region resulted by high discharge energy process. Additionally, the larger crater size, microvoids and numerous debris particles were also appeared on BMG workpiece surface machined using higher discharge energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-75

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. C. Huang, J. P. Chu, and J. S. C. Jang, Recent progress in metallic glasses in Taiwan, Intermetallics, vol. 17, no. 12, (2009) p.973–987.

DOI: 10.1016/j.intermet.2009.05.004

Google Scholar

[2] A. Inoue and A. Takeuchi, Recent development and application products of bulk glassy alloys, Acta Mater., vol. 59, no. 6, (2011) p.2243–2267.

DOI: 10.1016/j.actamat.2010.11.027

Google Scholar

[3] T. Egami, Understanding the properties and structure of metallic glasses at the atomic level, JOM, vol. 62, no. 2, (2010) p.70–75.

DOI: 10.1007/s11837-010-0036-4

Google Scholar

[4] A. Hirata et al., Direct observation of local atomic order in a metallic glass, Nat. Mater., vol. 10, p.28, Nov. (2010).

Google Scholar

[5] A. Inoue and T. Zhang, Fabrication of Bulk Glassy Zr55Al10Ni5Cu30 Alloy of 30 mm in Diameter by a Suction Casting Method, Mater. Transitions, vol. 37, (1996) p.185–187.

DOI: 10.2320/matertrans1989.37.185

Google Scholar

[6] X. Hui et al., High-zirconium-based bulk metallic glasses with large plasticity, Scr. Mater., vol. 63, no. 2, (2010) p.239–242.

Google Scholar

[7] T. H. Li et al., Significantly enhanced mechanical properties of ZrAlCo bulk amorphous alloy by microalloying with Ta, Intermetallics, vol. 93, no. (2018) p.162–168.

DOI: 10.1016/j.intermet.2017.12.008

Google Scholar

[8] N. K. Maroju, D. P. Yan, B. Xie, and X. Jin, Investigations on surface microstructure in high-speed milling of Zr-based bulk metallic glass, J. Manuf. Process., vol. 35, no. June, (2018) p.40–50.

DOI: 10.1016/j.jmapro.2018.07.020

Google Scholar

[9] X. Chen, J. Xiao, Y. Zhu, R. Tian, X. Shu, and J. Xu, Micro-machinability of bulk metallic glass in ultra-precision cutting, Mater. Des., vol. 136, (2017) p.1–12.

DOI: 10.1016/j.matdes.2017.09.049

Google Scholar

[10] M. Bakkal, Electron microscopy of bulk metallic glass machining chips, J. Non. Cryst. Solids, vol. 355, no. 45–47, (2009) p.2220–2223.

DOI: 10.1016/j.jnoncrysol.2009.07.018

Google Scholar

[11] J. D. Patel and K. D. Maniya, A Review on : Wire cut electrical discharge machining process for metal matrix composite, Procedia Manuf., vol. 20, (2018) p.253–258.

DOI: 10.1016/j.promfg.2018.02.037

Google Scholar

[12] C. Liu, N. Duong, M. P. Jahan, J. Ma, and R. Kirwin, Experimental investigation and numerical simulation of micro-EDM of bulk metallic glass with focus on crater sizes, Procedia Manuf., vol. 34, (2019) p.275–286.

DOI: 10.1016/j.promfg.2019.06.151

Google Scholar

[13] H. G. Cheong, Y. S. Kim, and C. N. Chu, Effect of reverse current on tool wear in micro-electrical discharge milling, Precis. Eng., vol. 55 (2019) pp.484-490.

DOI: 10.1016/j.precisioneng.2018.11.003

Google Scholar

[14] T. Muthuramalingam and B. Mohan, A review on influence of electrical process parameters in EDM process, Arch. Civ. Mech. Eng., vol. 15, 1 (2015) p.87–94.

DOI: 10.1016/j.acme.2014.02.009

Google Scholar

[15] H. Huang and J. Yan, On the surface characteristics of a Zr-based bulk metallic glass processed by microelectrical discharge machining, Appl. Surf. Sci., vol. 355, (2015) p.1306–1315.

DOI: 10.1016/j.apsusc.2015.08.239

Google Scholar

[16] S. H. Yeo, P. C. Tan, E. Aligiri, S. B. Tor, and N. H. Loh, Processing of Zirconium-Based Bulk Metallic Glass (BMG) Using Micro Electrical Discharge Machining (Micro-EDM), Mater. Manuf. Process., vol. 24, no. 12, (2009) p.1242–1248.

DOI: 10.1080/10426910903129661

Google Scholar

[17] C. C. Wang and B. H. Yan, Blind-hole drilling of Al2O3 / 6061Al composite using rotary electro-discharge machining, J. Mater. Prosc. Technol. vol. 102, (2000) p.90–102.

DOI: 10.1016/s0924-0136(99)00423-9

Google Scholar

[18] B. Mohan, A. Rajadurai, and K. G. Satyanarayana, Effect of SiC and rotation of electrode on electric discharge machining of Al - SiC composite, J. Mater. Prosc. Technol. vol. 124, (2002) pp.297-304.

DOI: 10.1016/s0924-0136(02)00202-9

Google Scholar

[19] S. H. Yeo, P. C. Tan, E. Aligiri, S. B. Tor, and N. H. Loh, Processing of Zirconium-Based Bulk Metallic Glass (BMG) Using Micro Electrical Discharge Machining (Micro-EDM), Mater. Manuf. Process., vol. 24, no. 12, (2009) p.1242–1248.

DOI: 10.1080/10426910903129661

Google Scholar

[20] A. Kumar and K. Æ. L. C. Pathak, Microanalysis of debris formed during electrical discharge machining ( EDM ), J. Mater. Sci., vol. 42, (2007) p.872–877.

DOI: 10.1007/s10853-006-0020-0

Google Scholar

[21] U. Maradia, M. Boccadoro, J. Stirnimann, F. Kuster, and K. Wegener, Electrode wear protection mechanism in meso – micro-EDM, J. Mater. Process. Technol., vol. 223, (2015) p.22–33.

DOI: 10.1016/j.jmatprotec.2015.03.039

Google Scholar

[22] J. Murray, D. Zdebski, and A. T. Clare, Workpiece debris deposition on tool electrodes and secondary discharge phenomena in micro-EDM, J. Mater. Process. Technol., vol. 212, no. 7, (2012) p.1537–1547.

DOI: 10.1016/j.jmatprotec.2012.02.019

Google Scholar

[23] H. G. Cheong, Y. S. Kim, and C. N. Chu, Effect of reverse current on tool wear in micro-electrical discharge milling, Precis. Eng., vol. 55, (2019) p.484–490.

DOI: 10.1016/j.precisioneng.2018.11.003

Google Scholar

[24] P. Taylor, T. Muthuramalingam, and B. Mohan, Influence of Discharge Current Pulse on Machinability in Electrical Discharge Machining, Materials and Manufacturing Processes no. October, (2013) p.37–41.

DOI: 10.1080/10426914.2012.746700

Google Scholar

[25] H. Huang and J. Yan, Microstructural changes of Zr-based metallic glass during micro-electrical discharge machining and grinding by a sintered diamond tool, J. Alloys Compd., vol. 688, (2016) p.14–21.

DOI: 10.1016/j.jallcom.2016.07.181

Google Scholar