The Effect of Addition of Waste Materials on Nitrile Butadiene Rubber to the Mechanical Properties of Roller Rubber

Article Preview

Abstract:

This research aims to determine the effect of adding filler material in the form of waste material on Nitrile Butadiene Rubber (NBR) in making roller rubber to improve quality in terms of hardness and tensile strength. Each rubber roller compound is made from a mixture of NBR with rice husk, recycled rubber and wood charcoal. The process of making NBR and NBR with the addition of alloys is done with two roll open mixers at a certain temperature and time accompanied by the addition of certain additives. Furthermore, the compound is pressed using Hydrosan and then cut according to the standard test to be performed. The process ends by placing the material in an environment with a certain humidity level for 24 hours. Tests carried out include the test of hardness by using Shore A Durometer and Universal testing machines to test the strength of tensile strength. The test results show that the addition of recycled rubber can increase hardness by 30% when compared to NBR without the addition of filler. While the value of tensile strength for NBR and recycled rubber alloys is much higher.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-52

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Muhammad, M. Ismail, M.A.R. Bhutta, A. Abdul-Majid, Influence of non-hydrocarbon substances on the compressive strength of natural rubber latex-modified concrete, Construction Building Mat. 27 (2012) 241-246.

DOI: 10.1016/j.conbuildmat.2011.07.054

Google Scholar

[2] J.D. David, H.D. Richaerd, Natural ans synthetic latex polymers, Rapra Technology Limited, United Kingdom(UK), (2002).

Google Scholar

[3] D. Wititsuwannakul, R. Wititsuwannakul, Biochemistry of natural rubber and structure of latex, In Steinbüchel A (ed), vol 2. Wiley-VCH, Weinheim, Germany, 2001, p.151–202.

DOI: 10.1002/3527600035.bpol2006

Google Scholar

[4] M. Yikmis, A. Steinbüchel, Historical and Recent Achievements in the Field of Microbial Degradation of Natural and Synthetic Rubber, App. Env. Microbiology, 78(13) (2012) 4543–4551.

DOI: 10.1128/aem.00001-12

Google Scholar

[5] R.A. Backhaus, Rubber formation in plants—a mini-review, Isr. J. Bot. 34 (1985) 283–293.

Google Scholar

[6] B. B.Boonstra, Reinforcement by filler, Rubber Technology and Manufacture, Butterwerth & Ce. Ltd. Lenden, 227 (1971).

Google Scholar

[7] D.E. El_Nashar, A.A. Ward, S.L. Abb-El-Messieh, D. Cairo, Physico-mechanical and dielectric prpertiesof nitrile rubber filled with silica and mica, Elastomers plastics (2009) 434-440.

Google Scholar

[8] A.M. Rezadoust. M. Esfandeh, evaluation of two-roll mill method for preparing short glass fibre reinforced NBR-phenolic composites, Polymers Pol. Comp. 9(6) (2001) 403-408.

DOI: 10.1177/096739110100900605

Google Scholar

[9] M. Balachadran, S.S. Bhagawan, Mechanical, thermal and transport properties of nitrile rubber (NBR)-nanoclay composites, J. Pol. Res. 19(2) (2012) 9809-9818.

DOI: 10.1007/s10965-011-9809-x

Google Scholar

[10] M.S. Sobhy, D.E. El-Nashar, M.A Mazied, Cure characteristics and physicomechanical properties of calcium carbonate reinforcement rubber composites, Egypt J. Sol. 26(2) (2003) 241-257.

DOI: 10.21608/ejs.2003.150162

Google Scholar

[11] M. Rahaman, T.K. Chaki, D. Khastgir, Development of high permormace EMI shelding material from EVA, NBR, and thei blends: effect of carbon black structure, J. Mat. Sci., 46(11) (2011) 3989-3999.

DOI: 10.1007/s10853-011-5326-x

Google Scholar

[12] V. Jovanovic, S. Samarzija,-Jovanovic, J. Budinski-Simendic, G. Markovic, Composites based on carbon black reinforced NBR/EPDM rubber blends, Composites Part B: Eng, 45(1) (2013) 333-340.

DOI: 10.1016/j.compositesb.2012.05.020

Google Scholar

[13] A. Mostafa, A. Abouel-Kasem, M.R. Bayoumi, M.G. El-Sebaie, Effect of carbon black loading on the swelling and compression set behavior of SBR and NBR rubber compounds, Mat. Designs, 30(5) (2009) 1561-1568.

DOI: 10.1016/j.matdes.2008.07.043

Google Scholar

[14] M.A. Kader, K.Kim, Y.S. Lee, C. Nah, Preparation and properties of nitrile rubber/montmorillonite nanocomposites via latex blending, J. Mat. Sci, 41(22) (2006) 7341-7352.

DOI: 10.1007/s10853-006-0792-2

Google Scholar

[15] G. George, R. Joseph, S. Thomas, K.T. Varughese, Blends of isostatic polypropylene and nitrile rubber: morphology, mechanical properties and compatibilization, Polymer 36(23) (1995) 4405-4416.

DOI: 10.1016/0032-3861(95)96846-z

Google Scholar

[16] Y.P. Wu, Q.X. Jia, D.S. Yu, L.O Zhang, Structure and properties of nitrile rubber (NBR)-clay nanocomposites by co-coagulating NBR latex and clay aquaeous suspension, J. App. Pol. 89(12) (2003) 3855-3858.

DOI: 10.1002/app.12568

Google Scholar

[17] E. Marwanta, T. Mizumo, N. Nakamura, H. Ohno, Improved ionic conductivity of nitrile rubber/ionic liquid composites, Polymer, 46(11) (2005) 3795-3800.

DOI: 10.1016/j.polymer.2005.02.113

Google Scholar

[18] X. Cao, C. Xu, Y. Wang, Y. Liu, Y. Liu, Y. Chen, New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber, Pol. Test., 32(5) (2013) 819-826.

DOI: 10.1016/j.polymertesting.2013.04.005

Google Scholar

[19] F. Pruneda, J.J. Sunol, F. Andreu-Mateu, X. Colom, Thermal characterization of nitrile butadiene rubber (NBR) PVC Blends, J. Ther. Anal. Calorimetry 80(1) (2005) 187-190.

DOI: 10.1007/s10973-005-0634-5

Google Scholar

[20] J. Nieuwenhuizen, M. Reedijk, Thiuram and Dithiocarbamate Accelerated Sulfur Vulcanization from the Chemist's Perspective; Methods, Materials and Mechanisms Reviewed. Rubber Chem. Technol. 70(3) (1997) 368-429.

DOI: 10.5254/1.3538436

Google Scholar