Annealing Temperature Effect of ZnO Seed Layer on Integrated Photosupercapacitor Performance

Article Preview

Abstract:

Photosupercapacitor is an integrated device for harvesting and storing solar energy into electrical energy. Photosupercapacitor is constructed by solar cell and supercapacitor. In the solar cell with DSSC type, one of the influential variables is photoanode performance. The photoanode with ZnO layer plays a role in light absorption, charge mobility, and electrical properties, which are influenced by crystal structure and nanoscale morphology. One of nanoscale morphology of ZnO that widely used is nanorods. This work is focussed to investigate the effect of annealing temperature on seed layer ZnO to growth nanorods shape in photoanode of photosupercapacitor and its performance. The seed layer ZnO nanoparticle was deposited onto FTO substrate by a screen printing method. The ZnO nanorod was grown by dippin FTO/ZnO in solution (Zinc nitrate, HMT, and DI water) under 100 °C. The photosupercapacitor was constructed by DSSC and ZnO symmetric supercapacitor which integrated by using aluminum foil substrate. The annealing temperature on ZnO nanoparticles affected on increasing crystal size of ZnO seed. All of the samples show ZnO wurtzite phase with the highest peak located on the hkl plane (101), but ZnO nanorod growth to hkl plane (100). The DSSC part efficiency produced around 0.874%. The resulting efficiency of photosupercapacitor is around 0.549%. The annealing temperature causes the value of specific capacitance to decrease, because of decreasing DSSC performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-24

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Kurosawa, X. Gu, K.L. Gu, Y. Zhou, H. Yan, C. Wang, G.-J.N. Wang, M.F. Toney, Z. Bao, Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the All-Polymer Solar Cell Performance, Adv. Energy Mater. 8 (2018) 1701552. https://doi.org/10.1002/aenm.201701552.

DOI: 10.1002/aenm.201701552

Google Scholar

[2] W. Wang, W. Feng, J. Du, W. Xue, L. Zhang, L. Zhao, Y. Li, X. Zhong, Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12%, Adv. Mater. 30 (2018) 1705746. https://doi.org/10.1002/adma.201705746.

DOI: 10.1002/adma.201705746

Google Scholar

[3] P. Du, X. Hu, C. Yi, H.C. Liu, P. Liu, H.-L. Zhang, X. Gong, Self-Powered Electronics by Integration of Flexible Solid-State Graphene-Based Supercapacitors with High Performance Perovskite Hybrid Solar Cells, Adv. Funct. Mater. 25 (2015) 2420–2427.

DOI: 10.1002/adfm.201500335

Google Scholar

[4] C.H. Ng, H.N. Lim, S. Hayase, I. Harrison, A. Pandikumar, N.M. Huang, Potential active materials for photo-supercapacitor: a review, J. Power Sources. 296 (2015) 169–185.

DOI: 10.1016/j.jpowsour.2015.07.006

Google Scholar

[5] A. Fakharuddin, R. Jose, T.M. Brown, F. Fabregat-Santiago, J. Bisquert, A perspective on the production of dye-sensitized solar modules, Energy Environ. Sci. 7 (2014) 3952–3981.

DOI: 10.1039/c4ee01724b

Google Scholar

[6] T. Saga, Crystalline and Polycrystalline Silicon PV Technology, NPG Asia Mater. 2 (2010) 96-102.

Google Scholar

[7] P. Pandey, M.R. Parra, F.Z. Haque, R. Kurchania, Effects of annealing temperature optimization on the efficiency of ZnO nanoparticles photoanode based dye sensitized solar cells, J. Mater. Sci. Mater. Electron. 28 (2017) 1537–1545.

DOI: 10.1007/s10854-016-5693-9

Google Scholar

[8] T. Bai, Y. Xie, C. Zhang, Y. Zhang, J. Hu, J. Wang, Facile fabrication of ZnO nanorods/ZnO nanosheet-spheres hybrid photoanode for dye-sensitized solar cells, Funct. Mater. Lett. 8 (2015) 1550012.

DOI: 10.1142/s1793604715500125

Google Scholar

[9] Z. Huang, Y. Dou, K. Wan, F. Wu, L. Fang, H. Ruan, B. Hu, F. Meng, M. Liao, Enhancing the performance of dye-sensitized solar cells by ZnO nanorods/ZnO nanoparticles composite photoanode, J. Mater. Sci. Mater. Electron. 28 (2017) 17414–17420.

DOI: 10.1007/s10854-017-7675-y

Google Scholar

[10] N. Bagheri, A. Aghaei, M.Y. Ghotbi, E. Marzbanrad, N. Vlachopoulos, L. Häggman, M. Wang, G. Boschloo, A. Hagfeldt, M. Skunik-Nuckowska, Combination of asymmetric supercapacitor utilizing activated carbon and nickel oxide with cobalt polypyridyl-based dye-sensitized solar cell, Electrochimica Acta. 143 (2014) 390–397.

DOI: 10.1016/j.electacta.2014.07.125

Google Scholar

[11] J. Xu, H. Wu, L. Lu, S.-F. Leung, D. Chen, X. Chen, Z. Fan, G. Shen, D. Li, Integrated Photo-supercapacitor Based on Bi-polar TiO2 Nanotube Arrays with Selective One-Side Plasma-Assisted Hydrogenation, Adv. Funct. Mater. 24 (2014) 1840–1846.

DOI: 10.1002/adfm.201303042

Google Scholar

[12] F.-W. Lee, C.-W. Ma, Y.-H. Lin, P.-C. Huang, Y.-L. Su, Y.-J. Yang, A Micromachined Photo-Supercapacitor Integrated with CdS-Sensitized Solar Cells and Buckypaper, Sens. Mater. 28 (2016) 749–756.

DOI: 10.18494/sam.2016.1217

Google Scholar

[13] X. Chen, H. Lin, J. Deng, Y. Zhang, X. Sun, P. Chen, X. Fang, Z. Zhang, G. Guan, H. Peng, Electrochromic fiber-shaped supercapacitors, Adv. Mater. 26 (2014) 8126–8132.

DOI: 10.1002/adma.201403243

Google Scholar

[14] G. Wee, T. Salim, Y.M. Lam, S.G. Mhaisalkar, M. Srinivasan, Printable photo-supercapacitor using single-walled carbon nanotubes, Energy Environ. Sci. 4 (2011) 413–416.

DOI: 10.1039/c0ee00296h

Google Scholar

[15] M. Skunik-Nuckowska, K. Grzejszczyk, P.J. Kulesza, L. Yang, N. Vlachopoulos, L. Häggman, E. Johansson, A. Hagfeldt, Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into photoelectrochemical capacitor, J. Power Sources. 234 (2013) 91-99.

DOI: 10.1016/j.jpowsour.2013.01.101

Google Scholar

[16] A.P. Cohn, W.R. Erwin, K. Share, L. Oakes, A.S. Westover, R.E. Carter, R. Bardhan, C.L. Pint, All silicon electrode photocapacitor for integrated energy storage and conversion, Nano Lett. 15 (2015) 2727–2731.

DOI: 10.1021/acs.nanolett.5b00563

Google Scholar

[17] J. Bae, Y.J. Park, M. Lee, S.N. Cha, Y.J. Choi, C.S. Lee, J.M. Kim, Z.L. Wang, Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes, Adv. Mater. 23 (2011) 3446–3449.

DOI: 10.1002/adma.201101345

Google Scholar

[18] M.Z. Masrul, T. Suprayogi, M. Diantoro, A. Fuad, E. Latifah, A. Hidayat, The Effect of Light Irradiation on Performance of Photo-Supercapacitor of FTO/TiO 2 -ZnO-β Carotene-Quercetin/Carbon/Al/PVDF-BaTiO 3 /Al, IOP Conf. Ser. Mater. Sci. Eng. 515 (2019) 012077. https://doi.org/10.1088/1757-899X/515/1/012077.

DOI: 10.1088/1757-899x/515/1/012077

Google Scholar

[19] T. Suprayogi, Moh.Z. Masrul, M. Diantoro, A. Taufiq, A. Fuad, A. Hidayat, The Effect of Annealing Temperature of ZnO Compact Layer and TiO 2 Mesoporous on Photo-Supercapacitor Performance, IOP Conf. Ser. Mater. Sci. Eng. 515 (2019) 012006. https://doi.org/10.1088/1757-899X/515/1/012006.

DOI: 10.1088/1757-899x/515/1/012006

Google Scholar

[20] S.E.I. Suryani, U. Sa'adah, W.N.L. Amini, T. Suprayogi, A.A. Mustikasari, A. Taufiq, Sunaryono, M. Diantoro, H. Nur, Effect of ZnO and Annealing on the Hydrophobic Performance of x(ZnO)-CA-PLA, J. Phys. Conf. Ser. 1093 (2018) 012003. https://doi.org/10.1088/1742-6596/1093/1/012003.

DOI: 10.1088/1742-6596/1093/1/012003

Google Scholar

[21] A.A. Mustikasari, M. Diantoro, N. Mufti, R. Suryana, The Effect of Nano ZnO Morphology on Structure, Dielectric Constant, and Dissipation Factor Of CA-Nano ZnO/ITO Films, J. Neutrino. 10 (2018) 65. https://doi.org/10.18860/neu.v10i2.4924.

DOI: 10.18860/neu.v10i2.4924

Google Scholar

[22] J. Chung, J. Lee, S. Lim, Annealing effects of ZnO nanorods on dye-sensitized solar cell efficiency, Phys. B Condens. Matter. 405 (2010) 2593–2598.

DOI: 10.1016/j.physb.2010.03.041

Google Scholar

[23] N. Mufti, M. Tommy Hasan Abadi, A. Yasrina, Sunaryono, Yudyanto, M. Diantoro, A. Fuad, Photoelectrochemical Performance of ZnO Nanorods Grown on Stainless Steel Substrate, IOP Conf. Ser. Mater. Sci. Eng. 515 (2019) 012023. https://doi.org/10.1088/1757-899X/515/1/012023.

DOI: 10.1088/1757-899x/515/1/012023

Google Scholar

[24] D. Nugrahawati, Fabrikasi Dye Sensitized Solar Cell (DSSC) Menggunakan Mawar Merah (Rosa Damascena Mill) Sebagai Pewarna Alami Berbasis Antosianin, Skripsi Jur. Fis. Univ. Sebel. Maret Surak. (2012).

Google Scholar