Effect of Polyaniline on Structural and Optical Characteristics of Fe3O4 and TiO2 Nanoparticles

Article Preview

Abstract:

In this work, Fe3O4 nanoparticles (NPs) were synthesized using coprecipitation method and TiO2 NPs were synthesized using sonication method. Fe3O4/polyaniline and TiO2/polyaniline nanocomposites (NCs) were synthesized using polymerization methods. The samples were characterized by X-ray diffractometer, Fourier-transform infrared spectroscopy, and ultraviolet-visible spectroscopy. The results of X-ray diffraction data analysis presented that polyaniline decreased the crystallinity of Fe3O4 and TiO2 NPs. However, the crystal structure of Fe3O4 and TiO2 NPs did not change, which successively formed the cubic spinel and the tetragonal anatase phases. Furthermore, the functional groups of Ti-O-Ti and Fe-O were detected in the wavenumber ranges of 620-580 cm-1 and 410-520 cm-1, respectively. The presence of polyaniline was also detected by the emergence of a functional group of polyaniline which also showed that there was an interaction of Fe3O4 and TiO2 NPs with polyaniline. Meanwhile, the results of UV-Vis data analysis showed that the addition of polyaniline decreased the bandgap energy of Fe3O4 and TiO2 NPs significantly from 2.186 to 2.174 eV and from 3.374 to 3.320 eV, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-15

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Rahmawati, A. Taufiq, Sunaryono, B. Yuliarto, Suyatman, Nugraha, I. Noviandri, D.A. Setyorini, D. Kurniadi, The synthesis of Fe3O4/MWCNT nanocomposites from local iron sands for electrochemical sensors, AIP Conf. Proc. 1958 (2018) 020016-1–020016-8.

DOI: 10.1063/1.5034547

Google Scholar

[2] J.H. Wei, C.J. Leng, X.Z. Zhang, W.H. Li, Z.Y. Liu, J. Shi, Synthesis and magnetorheological effect of Fe3O4-TiO2 nanocomposites, J. Phys. Conf. Ser. 149 (2009) 012083.

Google Scholar

[3] Y.M. Wang, X. Cao, G.H. Liu, R.Y. Hong, Y.M. Chen, X.F. Chen, H.Z. Li, B. Xu, D.G. Wei, Synthesis of Fe3O4 magnetic fluid used for magnetic resonance imaging and hyperthermia, J. Magn. Magn. Mater. 323(23) (2011) 2953–2959.

DOI: 10.1016/j.jmmm.2011.05.060

Google Scholar

[4] Y.C. Liang, L. Chang, W. Qiu, A.G. Kolhatkar, B. Vu, K. Kourentzi, T.R. Lee, Y. Zu, R. Willson, D. Litvinov, Ultrasensitive magnetic nanoparticle detector for biosensor applications, Sensors 17 (2017) 1296.

DOI: 10.3390/s17061296

Google Scholar

[5] X.D. Hu, H.Q. Zhang, D.M. Cao, Synthesis of Fe3O4 Nanocrystals and Application in Photocatalytic Degradation of Levofloxacin Lactate, Mater. Sci. Forum 688 (2011) 376–382.

DOI: 10.4028/www.scientific.net/msf.688.376

Google Scholar

[6] Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang, X. Deng, Synthesis of Fe3O4`nanoparticles and their magnetic properties, Procedia Eng., 27 (2012) 632–637.

DOI: 10.1016/j.proeng.2011.12.498

Google Scholar

[7] S.F. Hojati, A. Amiri, S. Mohamadi, N. M. Eghbali, Novel organometallic nanomagnetic catalyst for multicomponent synthesis of spiroindoline derivatives, Res. Chem. Intermed. 44(4) (2018) 2275–2287.

DOI: 10.1007/s11164-017-3228-5

Google Scholar

[8] P. Dipak, D.C. Tiwari, S.K. Dwivedi, T.C. Shami, P.K. Dwivedi, Synthesis and characterization polymer nanocomposite of PANI/TiO2(np)-Fe+3 for microwave application, J. Mater. Sci. Mater. Electron. 29(8) (2018) 6439–6445.

DOI: 10.1007/s10854-018-8625-z

Google Scholar

[9] P. Liu, Y. Huang, Y. Yang, J. Yan, X. Zhang, Sandwich structures of graphene@Fe3O4@PANI decorated with TiO2 nanosheets for enhanced electromagnetic wave absorption properties, J. Alloys Compd. 662 (2016) 63–68.

DOI: 10.1016/j.jallcom.2015.12.022

Google Scholar

[10] D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile, Nanotechnology 19(14) (2008) 145605.

DOI: 10.1088/0957-4484/19/14/145605

Google Scholar

[11] J. Alam, U. Riaz, S. Ahmad, Effect of ferrofluid concentration on electrical and magnetic properties of the Fe3O4/PANI nanocomposites, J. Magn. Magn. Mater. 314(2) (2007) 93–99.

DOI: 10.1016/j.jmmm.2007.02.195

Google Scholar

[12] X. Chen, H. Li, H. Wu, Y. Wu, Y. Shang, J. Pan, X. Xiong, Fabrication of TiO2@PANI nanobelts with the enhanced absorption and photocatalytic performance under visible light, Mater. Lett. 172 (2016) 52–55.

DOI: 10.1016/j.matlet.2016.02.134

Google Scholar

[13] X. Yao, X. Kou, J. Qiu, Generation mechanism of negative dielectric properties of nano-Fe3O4/PANI composites, Mater. Chem. Phys. 208 (2018) 177–182.

DOI: 10.1016/j.matchemphys.2018.01.039

Google Scholar

[14] I. S. Unver, Z. Durmus, Magnetic and microwave absorption properties of magnetite (Fe3O4)@conducting polymer (PANI, PPY, PT) composites, IEEE Trans. Magn. 53(10) (2017) 1–8.

DOI: 10.1109/tmag.2017.2716349

Google Scholar

[15] Y. Kong, T. Wu, D. Wu, Y. Zhang, Y. Wang, B. Du, Q. Wei, An electrochemical sensor based on Fe3O4@PANI nanocomposites for sensitive detection of Pb 2+ and Cd 2+, Anal. Methods 10(39) (2018) 4784–4792.

DOI: 10.1039/c8ay01245h

Google Scholar

[16] T. Xiao, X. Wang, X. Wang, Z. Li, L. Zhang, P. Lv, J. Zhao, Effects of monomer solvent on the supercapacitance performance of PANI/TiO2 nanotube arrays composite electrode, Mater. Lett. 230 (2018) 245–248.

DOI: 10.1016/j.matlet.2018.07.137

Google Scholar

[17] M. Radoičić, G. Ćirić-Marjanović, V. Spasojević, P. Ahrenkiel, M. Mitrić, T. Novaković, Z. Šaponjić, Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites, Appl. Catal. B Environ. 213 (2017) 155–166.

DOI: 10.1016/j.apcatb.2017.05.023

Google Scholar

[18] S. W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes, Synth. Met. 158(6) (2008) 251–258.

DOI: 10.1016/j.synthmet.2008.01.012

Google Scholar

[19] S. W. Phang, N. Kuramoto, Microwave absorption property of polyaniline nanocomposites containing TiO2 and Fe3O4 nanoparticles after FeCl36H2O treatment, Polym. Compos. 31(3) (2010) 516-523.

DOI: 10.1002/pc.20838

Google Scholar

[20] A. Šutka, S. Lagzdina, I. Juhnevica, D. Jakovlevs, M. Maiorov, Precipitation synthesis of magnetite Fe3O4 nanoflakes, Ceram. Int. 40(7) (2014) 11437–11440.

DOI: 10.1016/j.ceramint.2014.03.140

Google Scholar

[21] A. Manaf, M.A.E. Hafizah, A.F. Riyadi, Andreas, Electrical conductivity of polyaniline (PANI) assisted by anionic surfactant through emulsion polymerization technique, J. Phys. Conf. Ser. 1153 (2019) 012067.

DOI: 10.1088/1742-6596/1153/1/012067

Google Scholar

[22] A.H. Elsayed, M.S.M. Eldin, A.M. Elsyed, A.H.A. Elazm, E.M. Younes, H.A. Motaweh, Synthesis and properties of polyaniline/ferrites nanocomposites, Int. J. Electrochem Sci. 6 (2011) 206-221.

Google Scholar

[23] F. Movassagh-Alanagh, A. Bordbar-Khiabani, A. Ahangari-Asl, Three-phase PANI@nano-Fe3O4@CFs heterostructure: fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@nano-Fe3O4@CFs/epoxy hybrid composite, Compos. Sci. Technol. 150 (2017) 65–78.

DOI: 10.1016/j.compscitech.2017.07.010

Google Scholar

[24] S. Khashan, S. Dagher, N. Tit, A. Alazzam, I. Obaidat, Novel method for synthesis of Fe3O4@TiO2 core/shell nanoparticles, Surf. Coat. Technol. 322 (2017) 92–98.

DOI: 10.1016/j.surfcoat.2017.05.045

Google Scholar

[25] J. Tang, X. Wen, Z. Liu, J. Wang, P. Zhang, Synthesis and electrorheological performances of 2D PANI/TiO2 nanosheets, Colloids Surf. Physicochem. Eng. Asp. 552 (2018) 24–31.

DOI: 10.1016/j.colsurfa.2018.04.051

Google Scholar

[26] W. Li, Y. Tian, C. Zhao, Q. Zhang, W. Geng, Synthesis of magnetically separable Fe3O4@PANI/TiO2 photocatalyst with fast charge migration for photodegradation of EDTA under visible-light irradiation, Chem. Eng. J. 303 (2016) 282–291.

DOI: 10.1016/j.cej.2016.06.022

Google Scholar