Performance of B-Doped SrTiO3/ Ni Sheet for Supercapacitor Material Application

Article Preview

Abstract:

The development of energy storage devices encourages the sustainability of research on basic materials of supercapacitor technology. SrTiO3 is one of metal oxide called as titanate alkali metal ATiO3 (A = Ba, Sr, Ca). This material shows an excellent dielectric constant, thus expected to be potential as raw material of supercapacitor. In this work, boron was used as a dopant on the SrTiO3 system to modify its local structure and enhance the electrical properties. Synthesis SrTi1-xBxO3 was carried out using a solid-state reaction method followed by the sintering process in various molar ratio. The microstructure of SrTi1-xBxO3 compound was identified by X-ray Diffraction with Cu-Kα. XRD pattern identified the presence of SrTi1-xBxO3 phase with a slight change in the lattice parameters. I-V measurement confirmed that the electrical conductivity increased gradually up to 16.04 Ω-1cm-1. For investigating their application for electrode materials, CV was employed and it presents that the specific capacitance and energy density of x = 0.08 were 5.488 Fg-1 and 0.110 Jg-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-31

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.S. Iro, C. Subramani, S.S. Dash, A Brief Review on Electrode Materials for Supercapacitor, Int. J. Electrochem. Sci.11 (2016) 10628–10643. https://doi.org/10.20964/2016.12.50.

DOI: 10.20964/2016.12.50

Google Scholar

[2] R. Aditya Sawitri, L. Suryanti, F. Uliyahanun Zuhri, M. Diantoro, Dielectric Properties of Dirt Sugarcane Sediment (DSS) Extract-BaTiO 3 for Organic Supercapacitors, IOP Conf. Ser. Mater. Sci. Eng. 515 (2019) 012062. https://doi.org/10.1088/1757-899X/515/1/012062.

DOI: 10.1088/1757-899x/515/1/012062

Google Scholar

[3] A.A. Mustikasari, M. Diantoro, N. Mufti, R. Suryana, The Effect Of Nano ZnO Morphology on Structure, Dielectric Constant, and Dissipation Factor Of CA-Nano ZnO/ITO Films, J. Neutrino. 10 (2018) 65. https://doi.org/10.18860/neu.v10i2.4924.

DOI: 10.18860/neu.v10i2.4924

Google Scholar

[4] M.Z. Masrul, T. Suprayogi, M. Diantoro, A. Fuad, E. Latifah, A. Hidayat, The Effect of Light Irradiation on Performance of Photo-Supercapacitor of FTO/TiO 2 -ZnO-β Carotene-Quercetin/Carbon/Al/PVDF-BaTiO 3 /Al, IOP Conf. Ser. Mater. Sci. Eng. 515 (2019) 012077. https://doi.org/10.1088/1757-899X/515/1/012077.

DOI: 10.1088/1757-899x/515/1/012077

Google Scholar

[5] B. Rajagopalan, J.S. Chung, Reduced chemically modified graphene oxide for supercapacitor electrode, Nanoscale Res. Lett. 9 (2014) 1–10. https://doi.org/10.1186/1556-276X-9-535.

DOI: 10.1186/1556-276x-9-535

Google Scholar

[6] M. Rynaldi Iqbal, I.T. Asri, Harsipah, S. Rakhmah, M. Diantoro, Yudyanto, Dielectric Properties of TiO 2 Nanoparticles Doped Flavonoid Extract of Pterocarpus Indicus Willd (PIW) Latex, J. Phys. Conf. Ser. 1093 (2018) 012042. https://doi.org/10.1088/1742-6596/1093/1/012042.

DOI: 10.1088/1742-6596/1093/1/012042

Google Scholar

[7] H. Wei, H. Gu, J. Guo, D. Cui, X. Yan, J. Liu, D. Cao, X. Wang, S. Wei, Z. Guo, Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields, Adv. Compos. Hybrid Mater. 1 (2018) 127–134. https://doi.org/10.1007/s42114-017-0003-4.

DOI: 10.1007/s42114-017-0003-4

Google Scholar

[8] T. Suprayogi, Moh.Z. Masrul, M. Diantoro, A. Taufiq, A. Fuad, A. Hidayat, The Effect of Annealing Temperature of ZnO Compact Layer and TiO 2 Mesoporous on Photo-Supercapacitor Performance, IOP Conf. Ser. Mater. Sci. Eng. 515 (2019) 012006. https://doi.org/10.1088/1757-899X/515/1/012006.

DOI: 10.1088/1757-899x/515/1/012006

Google Scholar

[9] A. Nag, V. Shubha, Oxide thermoelectric materials: A structure-property relationship, J. Electron. Mater. 43 (2014) 962–977. https://doi.org/10.1007/s11664-014-3024-6.

DOI: 10.1007/s11664-014-3024-6

Google Scholar

[10] A. Mehdizadeh Dehkordi, S. Bhattacharya, T. Darroudi, J.W. Graff, U. Schwingenschlögl, H.N. Alshareef, T.M. Tritt, Large thermoelectric power factor in Pr-doped SrTiO3-δ ceramics via grain-boundary-induced mobility enhancement, Chem. Mater. 26 (2014) 2478–2485. https://doi.org/10.1021/cm4040853.

DOI: 10.1021/cm4040853

Google Scholar

[11] S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, K. Kalantar-zadeh, Transition metal oxides - Thermoelectric properties, Prog. Mater. Sci. 58 (2013) 1443–1489. https://doi.org/10.1016/j.pmatsci.2013.06.003.

DOI: 10.1016/j.pmatsci.2013.06.003

Google Scholar

[12] J.-J. Wang, H.-B. Huang, T.J.M. Bayer, A. Moballegh, Y. Cao, A. Klein, E.C. Dickey, D.L. Irving, C.A. Randall, L.-Q. Chen, Defect chemistry and resistance degradation in Fe-doped SrTiO3 single crystal, Acta Mater. 108 (2016) 229–240. https://doi.org/10.1016/j.actamat.2016.02.022.

DOI: 10.1016/j.actamat.2016.02.022

Google Scholar

[13] A. Khoiriah, U. Utari, B. Purnama, Pengaruh Doping Ion Alumunium pada Kurva Serapan FTIR dan Struktur Kristal Nanopartikel Kobalt Ferit Hasil Kopresipitasi, J. Fis. Dan Apl. 13 (2017) 56. https://doi.org/10.12962/j24604682.v13i2.2298.

DOI: 10.12962/j24604682.v13i2.2298

Google Scholar

[14] H. Yu, S. Ouyang, S. Yan, Z. Li, T. Yu, Z. Zou, Sol-gel hydrothermal synthesis of visible-light-driven Cr-doped SrTiO 3 for efficient hydrogen production, J. Mater. Chem. 21 (2011) 11347–11351. https://doi.org/10.1039/c1jm11385b.

DOI: 10.1039/c1jm11385b

Google Scholar

[15] M. Sathya, K. Pushpanathan, Synthesis and Optical Properties of Pb Doped ZnO Nanoparticles, Appl. Surf. Sci. 449 (2018) 346–357. https://doi.org/10.1016/j.apsusc.2017.11.127.

DOI: 10.1016/j.apsusc.2017.11.127

Google Scholar

[16] S.H. Lee, H.K. Kim, Y.S. Yun, J.R. Yoon, S.G. Lee, Y.H. Lee, A novel high-performance cylindrical hybrid supercapacitor with Li4-xNaxTi5O12/activated carbon electrodes, Int. J. Hydrog. Energy. 39 (2014) 16569–16575. https://doi.org/10.1016/j.ijhydene.2014.05.072.

DOI: 10.1016/j.ijhydene.2014.05.072

Google Scholar

[17] J. Okamoto, G. Shimizu, S. Kubo, Y. Yamada, Hiroyuki Kitagawa, Akiyuki Matsushita, Yuh Yamada, Fumihiro Ishikawa, Thermoelectric properties of B-doped SrTiO 3 singe crystal, J. Phys. Conf. Ser. 176 (2009). https://doi.org/10.1088/1742-6596/176/1/012042.

DOI: 10.1088/1742-6596/176/1/012042

Google Scholar

[18] X. Liu, J. Liu, X. Sun, NiCo<inf>2</inf>O<inf>4</inf>@NiO hybrid arrays with improved electrochemical performance for pseudocapacitors, J. Mater. Chem. A. 3 (2015) 13900–13905. https://doi.org/10.1039/c5ta02429c.

DOI: 10.1039/c5ta02429c

Google Scholar