Synthesis and Characterization of Complex from K4[Co(SCN)6], Zinc(II) Chloride and Quinoline as Electrode Material of K-Ion Battery

Article Preview

Abstract:

Prussian Blue Like (PBL) compounds that are potentially used as K-Ion Battery (KIB) electrodes have been synthesized from zinc(II) chloride and quinoline (Qn) precursors combining melting and direct reaction method. The formed K2[Zn(Qn)2][Co(SCN)6] compounds melt in range 179-181°C with conductivity value reaches 468 μS/cm. Thiocyanate and quinoline ligands were characterized using FT-IR and UV-Vis spectrometry. The cyclic voltammetry of the formed compounds showed the reduction potential up to -0.34 V (versus AgCl/Ag).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Eftekhari, Z. Jian, and X. Ji, Potassium Secondary Batteries,, ACS Appl. Mater. Interfaces, vol. 9, no. 5, p.4404–4419, (2017).

DOI: 10.1021/acsami.6b07989

Google Scholar

[2] A. Eftekhari, Potassium secondary cell based on Prussian blue cathode,, J. Power Sources, vol. 126, no. 1–2, p.221–228, (2004).

DOI: 10.1016/j.jpowsour.2003.08.007

Google Scholar

[3] T. Shibata, M. Takachi, and Y. Moritomo, Low Voltage Charge/Discharge Behavior of Manganese Hexacyanoferrate,, Batteries, vol. 3, no. 1, p.7, (2017).

DOI: 10.3390/batteries3010007

Google Scholar

[4] C. D. Wessells, R. A. Huggins, and Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power,, Nat. Commun., vol. 2, no. 1, p.550–555, (2011).

DOI: 10.1038/ncomms1563

Google Scholar

[5] M. S. Chae, J. Hyoung, M. Jang, H. Lee, and S. T. Hong, Potassium nickel hexacyanoferrate as a high-voltage cathode material for nonaqueous magnesium-ion batteries,, J. Power Sources, vol. 363, p.269–276, (2017).

DOI: 10.1016/j.jpowsour.2017.07.094

Google Scholar

[6] X. Bie, K. Kubota, T. Hosaka, K. Chihara, and S. Komaba, A novel K-ion battery: hexacyanoferrate(ii)/graphite cell,, J. Mater. Chem. A, vol. 5, no. 9, p.4325–4330, (2017).

DOI: 10.1039/c7ta00220c

Google Scholar

[7] J. Kabesova, M.;Gazo, Structure and classification of thiocyanates and the mutual influence of their ligands,, Chem. Rev., vol. 34, no. 6, p.41, (1980).

Google Scholar

[8] M. N. Uddin and T. S. Rupa, Thiocyanato Bridged Bimetallic Complexes (M-SCN-Co): Synthesis, Characterization and Biological Studies,, Mod. Chem., vol. 3, no. 1, p.1, (2015).

DOI: 10.11648/j.mc.s.2015030101.11

Google Scholar

[9] A. E. Özel, Y. Büyükmurat, and S. Akyüz, Infrared-spectra and normal-coordinate analysis of quinoline and quinoline complexes,, J. Mol. Struct., vol. 565–566, p.455–462, May (2001).

DOI: 10.1016/s0022-2860(00)00793-6

Google Scholar

[10] S. J. Osborne et al., Thermochromism and switchable paramagnetism of cobalt(II) in thiocyanate ionic liquids,, Dalt. Trans., vol. 44, no. 25, p.11286–11289, (2015).

DOI: 10.1039/c5dt01829c

Google Scholar

[11] G. Lakshminarayana and S. Buddhudu, Spectral analysis of Mn2+, Co2+ and Ni2+: B2O3–ZnO–PbO glasses,, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 63, no. 2, p.295–304, Feb. (2006).

DOI: 10.1016/j.saa.2005.05.013

Google Scholar

[12] G. Rogez et al., Tuning the optical properties of Prussian blue-like complexes,, Chem. Commun., no. 14, p.1460–1461, Jul. (2002).

DOI: 10.1039/b202288e

Google Scholar