[1]
L. Sun, P.K.J. Wong, W. Zhang, Y. Zhai, D.X. Niu, Y.B. Xu, X. Zou, H.R. Zhai, Micromagnetic Simulation on the Interelement Coupling of High-Density Patterned Film, IEEE Trans. Magn. 51 (2015) 1–4.
DOI: 10.1109/tmag.2015.2438115
Google Scholar
[2]
S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, S.N. Piramanayagam, Spintronics based random access memory: a review, Mater. Today. 20 (2017) 530–548.
DOI: 10.1016/j.mattod.2017.07.007
Google Scholar
[3]
V.K. Joshi, Spintronics: A contemporary review of emerging electronics devices, Eng. Sci. Technol. Int. J. 19 (2016) 1503–1513.
Google Scholar
[4]
R. Sbiaa, S.N. Piramanayagam, Recent Developments in Spin Transfer Torque MRAM, Phys. Status Solidi RRL - Rapid Res. Lett. 11 (2017) 1700163.
DOI: 10.1002/pssr.201700163
Google Scholar
[5]
C. Mu, J. Jing, J. Dong, W. Wang, J. Xu, A. Nie, J. Xiang, F. Wen, Z. Liu, Static and dynamic characteristics of magnetism in permalloy oval nanoring by micromagnetic simulation, J. Magn. Magn. Mater. 474 (2019) 301–304.
DOI: 10.1016/j.jmmm.2018.11.049
Google Scholar
[6]
S.R. Ali, F. Naz, H. Akber, M. Naeem, S.I. Ali, S.A. Basit, M. Sarim, S. Qaseem, Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy, Chin. Phys. B. 27 (2018) 097503.
DOI: 10.1088/1674-1056/27/9/097503
Google Scholar
[7]
J. Ding, G.N. Kakazei, X. Liu, K.Y. Guslienko, A.O. Adeyeye, Higher order vortex gyrotropic modes in circular ferromagnetic nanodots, Sci. Rep. 4 (2015) 4796.
DOI: 10.1038/srep04796
Google Scholar
[8]
R.P. Cowburn, M.E. Welland, Micromagnetics of the single-domain state of square ferromagnetic nanostructures, Phys. Rev. B. 58 (1998) 9217–9226.
DOI: 10.1103/physrevb.58.9217
Google Scholar
[9]
J.J. Torres-Heredia, F. López-Urías, E. Muñoz-Sandoval, Micromagnetic simulations of 200-nm-diameter cobalt nanorings using a Reuleaux triangular geometry, J. Magn. Magn. Mater. 305 (2006) 133–140.
DOI: 10.1016/j.jmmm.2005.12.002
Google Scholar
[10]
F. López-Urías, J.J. Torres-Heredia, E. Muñoz-Sandoval, Magnetization patterns simulations of Fe, Ni, Co, and permalloy individual nanomagnets, J. Magn. Magn. Mater. 294 (2005) e7–e12.
DOI: 10.1016/j.jmmm.2005.03.044
Google Scholar
[11]
M.J. Donahue, D.G. Porter, OOMMF User's Guide, Version 1.0, National Institute of Standards and Technology, Gaithersburg, MD, 1999. http://math.nist.gov/oommf.
DOI: 10.6028/nist.ir.6376
Google Scholar
[12]
J.E. Miltat, M.J. Donahue, Numerical Micromagnetics: Finite Difference Methods, in: Handb. Magn. Adv. Magn. Mater. Ed. Helmut Kronmuller Stuart Park. Vol. 2 Micromagnetism, John Wiley & Sons, Ltd., 2007: p.1–23.
Google Scholar
[13]
C.L. Dennis, R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, The defining length scales of mesomagnetism: a review, J. Phys. Condens. Matter. 14 (2002) R1175–R1262.
DOI: 10.1088/0953-8984/14/49/201
Google Scholar
[14]
H.-G. Piao, D. Djuhana, J.-H. Shim, S.-H. Lee, S.-H. Jun, S.K. Oh, S.-C. Yu, D.-H. Kim, Three-Dimensional Spin Configuration of Ferromagnetic Nanocubes, J. Nanosci. Nanotechnol. 10 (2010) 7212–7216.
DOI: 10.1166/jnn.2010.2760
Google Scholar
[15]
C.F. Gélvez, E.J. Patiño, Coercive field enhancement in Co nanodisks: single-domain to vortex switching, J. Phys. Condens. Matter. 31 (2019) 13LT01.
DOI: 10.1088/1361-648x/ab015e
Google Scholar
[16]
C. Kittel, Physical Theory of Ferromagnetic Domains, Rev. Mod. Phys. 21 (1949) 541–583.
DOI: 10.1103/revmodphys.21.541
Google Scholar
[17]
C. Kittel, Introduction to solid state physics, 8th ed, Wiley, Hoboken, NJ, (2005).
Google Scholar
[18]
W.F. Brown, The Fundamental Theorem of Fine‐Ferromagnetic‐Particle Theory, J. Appl. Phys. 39 (1968) 993–994.
Google Scholar
[19]
R. Skomski, Nanomagnetics, J. Phys. Condens. Matter. 15 (2003) R841–R896.
DOI: 10.1088/0953-8984/15/20/202
Google Scholar
[20]
A. Kákay, L.K. Varga, Monodomain critical radius for soft-magnetic fine particles, J. Appl. Phys. 97 (2005) 083901.
DOI: 10.1063/1.1844612
Google Scholar