Micromagnetic Investigation of Magnetization Reversal in Sphere-Shaped Ferromagnetic Nanoparticle

Article Preview

Abstract:

In this paper, the magnetization reversal of sphere-shaped ferromagnetic nanoparticles has been investigated by means of micromagnetic simulation. Some ferromagnetic particles such as Cobalt, Iron, Nickel, and Permalloy were modeled with size variation from 50 nm to 100 nm. The discretization of the ferromagnetic model was used a cell size of 2.5×2.5×2.5 nm3 considering the exchange length (lex) of the materials. The quasi-static magnetic field was induced into the nanosphere to observe the magnetization response under time dependence. It is found that the coercivity values are decreased as the sphere size increased, which was conformed the experimental results. It is also observed that the domain structure of a single particle in remanent and ground-state condition are identical. Therefore, the specific understanding of magnetization process and domain structures in ferromagnetic nanoparticles could be an important step in the development of nanopatterned magnetic memory storage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-242

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Sun, P.K.J. Wong, W. Zhang, Y. Zhai, D.X. Niu, Y.B. Xu, X. Zou, H.R. Zhai, Micromagnetic Simulation on the Interelement Coupling of High-Density Patterned Film, IEEE Trans. Magn. 51 (2015) 1–4.

DOI: 10.1109/tmag.2015.2438115

Google Scholar

[2] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno, S. Fukami, S.N. Piramanayagam, Spintronics based random access memory: a review, Mater. Today. 20 (2017) 530–548.

DOI: 10.1016/j.mattod.2017.07.007

Google Scholar

[3] V.K. Joshi, Spintronics: A contemporary review of emerging electronics devices, Eng. Sci. Technol. Int. J. 19 (2016) 1503–1513.

Google Scholar

[4] R. Sbiaa, S.N. Piramanayagam, Recent Developments in Spin Transfer Torque MRAM, Phys. Status Solidi RRL - Rapid Res. Lett. 11 (2017) 1700163.

DOI: 10.1002/pssr.201700163

Google Scholar

[5] C. Mu, J. Jing, J. Dong, W. Wang, J. Xu, A. Nie, J. Xiang, F. Wen, Z. Liu, Static and dynamic characteristics of magnetism in permalloy oval nanoring by micromagnetic simulation, J. Magn. Magn. Mater. 474 (2019) 301–304.

DOI: 10.1016/j.jmmm.2018.11.049

Google Scholar

[6] S.R. Ali, F. Naz, H. Akber, M. Naeem, S.I. Ali, S.A. Basit, M. Sarim, S. Qaseem, Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy, Chin. Phys. B. 27 (2018) 097503.

DOI: 10.1088/1674-1056/27/9/097503

Google Scholar

[7] J. Ding, G.N. Kakazei, X. Liu, K.Y. Guslienko, A.O. Adeyeye, Higher order vortex gyrotropic modes in circular ferromagnetic nanodots, Sci. Rep. 4 (2015) 4796.

DOI: 10.1038/srep04796

Google Scholar

[8] R.P. Cowburn, M.E. Welland, Micromagnetics of the single-domain state of square ferromagnetic nanostructures, Phys. Rev. B. 58 (1998) 9217–9226.

DOI: 10.1103/physrevb.58.9217

Google Scholar

[9] J.J. Torres-Heredia, F. López-Urías, E. Muñoz-Sandoval, Micromagnetic simulations of 200-nm-diameter cobalt nanorings using a Reuleaux triangular geometry, J. Magn. Magn. Mater. 305 (2006) 133–140.

DOI: 10.1016/j.jmmm.2005.12.002

Google Scholar

[10] F. López-Urías, J.J. Torres-Heredia, E. Muñoz-Sandoval, Magnetization patterns simulations of Fe, Ni, Co, and permalloy individual nanomagnets, J. Magn. Magn. Mater. 294 (2005) e7–e12.

DOI: 10.1016/j.jmmm.2005.03.044

Google Scholar

[11] M.J. Donahue, D.G. Porter, OOMMF User's Guide, Version 1.0, National Institute of Standards and Technology, Gaithersburg, MD, 1999. http://math.nist.gov/oommf.

DOI: 10.6028/nist.ir.6376

Google Scholar

[12] J.E. Miltat, M.J. Donahue, Numerical Micromagnetics: Finite Difference Methods, in: Handb. Magn. Adv. Magn. Mater. Ed. Helmut Kronmuller Stuart Park. Vol. 2 Micromagnetism, John Wiley & Sons, Ltd., 2007: p.1–23.

Google Scholar

[13] C.L. Dennis, R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, The defining length scales of mesomagnetism: a review, J. Phys. Condens. Matter. 14 (2002) R1175–R1262.

DOI: 10.1088/0953-8984/14/49/201

Google Scholar

[14] H.-G. Piao, D. Djuhana, J.-H. Shim, S.-H. Lee, S.-H. Jun, S.K. Oh, S.-C. Yu, D.-H. Kim, Three-Dimensional Spin Configuration of Ferromagnetic Nanocubes, J. Nanosci. Nanotechnol. 10 (2010) 7212–7216.

DOI: 10.1166/jnn.2010.2760

Google Scholar

[15] C.F. Gélvez, E.J. Patiño, Coercive field enhancement in Co nanodisks: single-domain to vortex switching, J. Phys. Condens. Matter. 31 (2019) 13LT01.

DOI: 10.1088/1361-648x/ab015e

Google Scholar

[16] C. Kittel, Physical Theory of Ferromagnetic Domains, Rev. Mod. Phys. 21 (1949) 541–583.

DOI: 10.1103/revmodphys.21.541

Google Scholar

[17] C. Kittel, Introduction to solid state physics, 8th ed, Wiley, Hoboken, NJ, (2005).

Google Scholar

[18] W.F. Brown, The Fundamental Theorem of Fine‐Ferromagnetic‐Particle Theory, J. Appl. Phys. 39 (1968) 993–994.

Google Scholar

[19] R. Skomski, Nanomagnetics, J. Phys. Condens. Matter. 15 (2003) R841–R896.

DOI: 10.1088/0953-8984/15/20/202

Google Scholar

[20] A. Kákay, L.K. Varga, Monodomain critical radius for soft-magnetic fine particles, J. Appl. Phys. 97 (2005) 083901.

DOI: 10.1063/1.1844612

Google Scholar