Benchmarking Full-Potential Linearized Augmented Plane Wave (FLAPW) Method for Determination of Muon Stopping Sites in LiF

Article Preview

Abstract:

Muon stopping sites in Lithium Fluoride have been determined based on the minimum electrostatic potential calculation using density functional theory implemented in the full-potential linearized augmented planewave method. The isosurface of the electrostatic potential obtained in our calculation is similar to the calculation obtained by using pseudopotential-based plane wave (PPPW) method reported by Bernadini et al. [Physical Review B, 87 (2013) 115148]. This yields to the two possible muon sites inside the cage structure of Li-F forming tetrahedral coordination. One of the muon sites is located at the center of the tetrahedral while the other is at the equivalent site of the tetrahedral. In spite of the similar isosurface results, our global minimum is found at the center of the tetrahedral in contrast to the previous result obtained at the tetrahedral sites. The strategy to determine the muon possible sites based on the minimum of the total energy of the system will also be considered including the muon sites position between the two fluorine ions (F-).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

248-252

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Suprayoga, A. A. Nugroho, A. O. Polyakov, T. T. M. Palstra and I. Watanabe, Search for potential minimum positions in metal-organic hybrids,(C2H5NH3) 2CuCl4 and (C6H5CH2CH2NH3) 2CuCl4, by using density functional theory, Journal of Physics: Conference Series, 551 (2014) 012054, (2014).

DOI: 10.1088/1742-6596/551/1/012054

Google Scholar

[2] I. Watanabe, E. Suprayoga, N. Adam, S. S. Mohm-Tajudin, A. F. Rozlan, D. Puspita, R. Asih, F. Astuti, M. D. Umar, J. Angel, S. Sulaiman, and M. I. Mohamed-Ibrahim, Muon Site Estimations by DFT Calculations in Metal and Insulating Systems, Materials Science Forum, 827, 347-354, (2015).

DOI: 10.4028/www.scientific.net/msf.827.347

Google Scholar

[3] E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule,, Physical Review B, 24(2), 864, (1981).

DOI: 10.1103/physrevb.24.864

Google Scholar

[4] Weinert, M., Wimmer, E., & Freeman, A. J. Total-energy all-electron density functional method for bulk solids and surfaces. Physical Review B, 26(8), 4571, (1982).

DOI: 10.1103/physrevb.26.4571

Google Scholar

[5] K. Nakamura, T. Ito, A. J. Freeman, L. Zhong and J. Fernandez-de-Castro, Intra-atomic noncollinear magnetism and the magnetic structures of antiferromagnetic FeMn, Physical Review B, 67(1), 014405, (2003).

DOI: 10.1103/physrevb.67.014405

Google Scholar

[6] J. S. Möller, D. Ceresoli, T. Lancaster, N. Marzari, and S. J. Blundell, Quantum states of muons in fluorides. Physical Review B, 87(12), 121108, (2013).

DOI: 10.1103/physrevb.87.121108

Google Scholar

[7] F. Bernardini, P. Bonfa, S. Massidda and R. De Renzi, Ab initio strategy for muon site assignment in wide band gap fluorides, Physical Review B, 87, 115148, (2013).

DOI: 10.1103/physrevb.87.115148

Google Scholar

[8] J. H. Brewer, S. R. Kreitzman, D. R. Noakes, E. J. Ansaldo, D. R. Harshman, and R. Keitel, Observation of muon-fluorine" hydrogen bonding" in ionic crystals. Physical Review B, 33(11), 7813, (1986).

DOI: 10.1103/physrevb.33.7813

Google Scholar

[9] R. W. G. Wyckoff, Crystal Structures, second ed., Interscience Publishers, New York, (1963).

Google Scholar

[10] K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272-1276, (2011).

DOI: 10.1107/s0021889811038970

Google Scholar