Lower Critical Field of Layered Organic Superconductor with Asymmetrical Donor κ-(MDT-TTF)2AuI2

Article Preview

Abstract:

We report magnetization measurement in the superconducting state of a type-II organic layered superconductor with asymmetrical donor k-(MDT-TTF)2AuI2. The demagnetization factor of a plate-like shape of the single crystal has been taken into account for the measurement by applying an external field perpendicular to the conducting plane. The superconducting transition temperature TC is determined to be 4.7 K through the detection of demagnetization signal. The lower critical field is 10.5±1.4 G. This result implies that the stable vortex state of k-(MDT-TTF)2AuI2 can be reached at the applied magnetic field above 105 Oe

You might also be interested in these eBooks

Info:

Periodical:

Pages:

221-226

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Mori, Electronic properties of organic conductor,, Springer, Japan, 2016, Chapter 6, Superconductivity. ISBN 978-4-431-55263-5.

Google Scholar

[2] K. Kanoda et al., Upper critical field and NMR relaxation studies of an organic superconductor, k-(MDT-TTF)2AuI2,, Synth. Met., vol. 56, no. 2–3, p.2871–2876, (1993).

DOI: 10.1016/0379-6779(93)90049-3

Google Scholar

[3] A. M. Kini et al., (MDT-TTF)2AuI2: An ambient pressure organic superconductor (Tc = 4.5 K) based on an unsymmetrical electron donor,, Solid State Commun., vol. 69, no. 5, p.503–507, (1989).

DOI: 10.1016/0038-1098(89)90229-9

Google Scholar

[4] Y. Nakazawa and S. Yamashita, Thermodynamic properties of κ-(BEDT-TTF)2X salts: Electron correlations and superconductivity, Crystals, 2, 741-761 (2012).

DOI: 10.3390/cryst2030741

Google Scholar

[5] Y. Nakazawa, S. Imajo, Y. Matsumura, S. Yamashita, and H. Akutsu, Thermodynamic picture of dimer-Mott organic superconductors revealed by heat capacity measurements with external and chemical pressure control, Crystals, 8, 143 (2018).

DOI: 10.3390/cryst8040143

Google Scholar

[6] Y. Kobayashi, T. Nakamura, T. Takahashi, K. Kanoda, B. Hilti, and J. S. Zambounis, Observation of the coherence peak of 1H-NMR relaxation rate in the superconducting state of (MDT-TTF)2AuI2,, Synth. Met., vol. 70, no. 1–3, p.871–872, (1995).

DOI: 10.1016/0379-6779(94)02684-q

Google Scholar

[7] Y. Tsubokura et al., Gap symmetry of organic superconductor κ-(MDT-TTF)2AuI2 determined by specific heat,, Synth. Met., vol. 85, p.1515–1516, (1997).

DOI: 10.1016/s0379-6779(97)80328-1

Google Scholar

[8] K. Ichimura et al., STM Spectroscopy on Anisotropic Superconductors,, J. Supercond., vol. 12, no. 3, p.519–523, (1999).

Google Scholar

[9] K. Kanoda, Mott-Insulator Transition in k-ET2X and (DCNQI)2M,, J. Phys. Soc. Jpn., 75, 051007, (2006).

Google Scholar

[10] Y. J. Uemura, Muon spin relaxation studies on high-TC, organic, heavy-fermion, and Chevrel phase superconductors,, Physica B, 169, 99 – 106, (1991).

DOI: 10.1016/0921-4526(91)90214-y

Google Scholar

[11] D. Craik, Magnetism Principles and Applications,, Wiley, Chichester, 1995, p.93.

Google Scholar

[12] A. Hountas, A. Terzis, G. C. Papavassiliou, B. Hilti, M. Burkle, C. W. Meyer, J. Zambounis, Acta Crystallographica Section C: Crystal Structure Comm., 46, 228 (1990).

DOI: 10.1107/s0108270189006220

Google Scholar