Influence of Gamma Irradiation to Magneto-Impedance Ratio in the Electrodeposited [NiFe/Cu]4 Multilayer

Article Preview

Abstract:

Influence of gamma irradiation to the magneto-impedance ratio of the electrodeposited [NiFe/Cu]4 multilayer on meander-shape PCB substrate has been studied. The magneto-impedance ratios were measured for both un-irradiated and irradiated by gamma radiation of Co-60 with a total dose of 40 Gy. The morphological structure were done by using scanning electron microscopy (SEM). The decrease in grain size of the samples after Gamma irradiated is observed. The magnetic property modifies as consequence of the change in the microstructure samples. Within result, the magneto-impedance ratio decreases around 34.9% for irradiated sample.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-207

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Knobel and K.R. Pirota, Journal of Magnetism and Magnetic Materials 242-245, 33 – 40 (2002).

Google Scholar

[2] M. Goktepe, Y. Ege, N. Bayri, and S. Atalay. Non-destructive Crack Detection Using GMI Sensor. Phys. Stat. Sol. (c) 1, No. 12, 3436-3439 (2004).

DOI: 10.1002/pssc.200405474

Google Scholar

[3] Rimond Hamia, Christophe Cordier, Sebastien Saez, Christophe Dolabdjian. Giant Magnetoimpedance Sensor for Non Destructive Evaluation Eddy Current System. Sensor Letters, American Scientific Publishers, 2009, 7 (3, Sp. Iss. SI), pp.437-441.

DOI: 10.1166/sl.2009.1045

Google Scholar

[4] Zhen Yang, Huanhuan Wan, Pengfei Guo, Yuanyuan Ding, Chong Lei and Yongsong Luo. A Multi-Region Magnetoimpedance-Based Bio-Analytical System for Ultrasensitive Simultaneous Determination of Cardiac Biomarkers Myoglobin and C-Reactive Protein. Sensors 2018, 18, 1765.

DOI: 10.3390/s18061765

Google Scholar

[5] Anna A. Chlenova, Alexey A. Moiseev, Mikhail S. Derevyanko, Aleksandr V. Semirov, Vladimir N. Lepalovsky and Galina V. Kurlyandskaya, Permalloy-Based Thin Film Structure: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications, Sensors 2017, 17, (1900).

DOI: 10.3390/s17081900

Google Scholar

[6] San-Sheng Wang et al 2018 J.Phys. D: Appl. Phys. 51 455001.

Google Scholar

[7] Garcia-Arribas, A et al, Sensor Application of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity, Sensors 2014, 14, pp.7602-7624.

DOI: 10.3390/s140507602

Google Scholar

[8] G.V. Kurlandskaya, A.V. Svalov, E. Fernandez, A. Garcia-Arribas, J.M. Barandiaran, J. Appl. Phys. 107 (2010) 09C502.

Google Scholar

[9] Ismail, Nuryani, Budi Purnama, Critical diameter and magneto-impedance effect in electrodeposited [Cu/Ni80Fe20]3 multilayer wire at low frequency, AIP Conference Proceedings 1746, 020002 (2016).

DOI: 10.1063/1.4953927

Google Scholar

[10] A.C. Mishra, Effect of Composition on Magnetic Softness and Magneto-impedance of Electrodeposited NiFe/Cu, Indian J Phys, November (2013).

Google Scholar

[11] L. Zhu, F. Jin, Y.Q. Zhu, J.C. Wang, K.F. Dong, W.Q. Mo, J.L. Song, J Ouyang, Giant Magneto-Impedance (GMI) Effect in Single-Layer Soft Magnetic Film Under Stress, J. Nanosci. Nanotechnol. 2018, Vol. 18, No. 12, pp.8195-8200.

DOI: 10.1166/jnn.2018.15799

Google Scholar

[12] G.V. Kurlyandskaya et al, Journal of Magnetism and Magnetic Materials 383 (2015) pp.220-225.

Google Scholar

[13] M.T. Tung et al, Physica B 442 (2014) pp.16-20.

Google Scholar

[14] Garcia-Arribas, A et al, Thin Film Magnetoimpedance Structure Onto Flexible Substrate as Deformation Sensors, IEEE Trans. Magn. vol. 53, no. 4, April (2017).

Google Scholar

[15] Wahyu Eko Prasetyo et al 2017 J. Phys.:Conf. Ser. 909 012030.

Google Scholar

[16] R.B. da Silva et al, Journal of Magnetism and Magnetic Materials 394 (2015) pp.87-91.

Google Scholar

[17] D.G. Park, H.Song, and Y.M. Cheong, Effects of Gamma Irradiation and Thermal Annealing on the Co-Based Amorphous Ribbon, IEEE Trans. Magn., vol. 47, no. 10, pp.2835-2837, Oct. (2011).

DOI: 10.1109/tmag.2011.2158402

Google Scholar

[18] Anil.V.Raut, D.V. Kurmude, D.R. Shengule, K.M. Jadhav. Effect of Gamma Irradiation on the Structural and Magnetic Properties of Co-Zn Spinel Ferrite Nanoparticles, Material Research Bulletin. http://dx.doi.org/10.1016/j.materrsbull.2014.11.051.

DOI: 10.1016/j.materresbull.2014.11.051

Google Scholar

[19] A.S. Jagadisha, E.Nagaraja H.S. Jayanna, N.B. Desai, Effect of Gamma Radiation on Magnetic Properties of Magnesium Zinc Ferrite, International Journal of Innovative Research & Development, vol. 5, issue 11, p.28 – 31, Oct. (2016).

Google Scholar

[20] L. Ma, L. Zhang, X. Li, Z. Li, K. Zhou, Fabrication and Characterization of Electrodeposited Nanocrystalline Ni-Fe Alloys for NiFe2O4 Spinel Coatings, Transactions of Nonferrous Metals Society of China, vol. 25, pp.146-153 (2015).

DOI: 10.1016/s1003-6326(15)63589-0

Google Scholar

[21] M.H. Phan, H.X. Peng, Giant Magnetoimpedance Materials: Fundamental and Applications, Progress in Materials Science 53 (2008), pp.323-420.

DOI: 10.1016/j.pmatsci.2007.05.003

Google Scholar

[22] A. Chaturvedi, T.P. Dhakal, S. Watanachi, A.T. Le, M.H. Phan, Srikanth, Material Science and Engineering B, 179, 146 – 150 (2010).

Google Scholar

[23] Routray KL, Sanyal D, Behera D, Gamma irradiation induced structural, electrical, magnetic and ferroelectric transformation in bismuth doped nanosized cobalt ferrite for various applications, Materials Research Bulletin 110 (2019) pp.126-134.

DOI: 10.1016/j.materresbull.2018.10.019

Google Scholar