Influence of Multilayer Number to Magneto-Impedance Ratio in Electrodeposited [NiFe/Cu]N Multilayer

Article Preview

Abstract:

Magneto-impedance ratio of the multilayer [NiFe/Cu)]N study by the number of multilayer. The both sample films of NiFe and Cu are fabricated by electrodeposition methods on a Cu-patterned substrate. The characteristic of magneto-impedance (MI) is performed at room temperature. Magneto-impedance are modified by varying N times (2, 4, 6 and 8) and the measurements frequency. The result show that the typical symetry of the magneto-impedance curve. Then the magneto-impedance (MI) ratio increases with the increase of frequency and N number layers. The increase of the magnetic permeability should address the increase of the MI ratio. Finally, the highest magneto-impedance ratio of 13.79 is obtained for [NiFe (200)/Cu (25)]8 at frequency 100 kHz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-196

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.V. Panina, K. Mohri, Magneto-impedance in multilayer films, Sensors and Actuators A: Physical., Vol. 81 (2000) 71-77.

DOI: 10.1016/s0924-4247(99)00089-8

Google Scholar

[2] G.S. Donald, S. Gerhard, P. Fabrice, J. Brice, K. Tanay, B. Shekhar, Review of On-Chip Inductor Structures with Magnetic Field, IEEE Transactions on Magnetics., Vol. 45 (2009) 4760-4766.

Google Scholar

[3] K. Mohri, T. Kohsawa, K. Kawashima, H. Yoshida, L. Panina, Magneto-inductive effect (MI effect) in amorphous wires, IEEE Transactions on Magnetics., Vol (28) 3150-3152.

DOI: 10.1109/20.179741

Google Scholar

[4] Y. Honkura, Development of amorphous wire type MI sensors for automobile use, Journal of Magnetism and Magnetic Materials., Vol 249 (2002) 375-381.

DOI: 10.1016/s0304-8853(02)00561-9

Google Scholar

[5] J. Llandro, J. J. Palfreyman, A. Lonescu, C. H.W. Barnes, C, Magnetic biosensor technologies for medical applications: a review. Medical and Biological Engineering and Computing, Vol. 48 (2010) 977-998.

DOI: 10.1007/s11517-010-0649-3

Google Scholar

[6] K. Fodil, M. Denoual, C. Dolabdjian, A. Treizebre, V. Senez, In-flow detection of ultra-small magnetic particles by an integrated giant magnetic impedance sensor, Applied Physics Letters., Vol. 108 (2016) 173701.

DOI: 10.1063/1.4948286

Google Scholar

[7] N.A. Buznikov, A. P. Safronov, I. Orue, E. V. Golubeva, V. N. Lepalovskij, A. A. Chlenova, G.V. Kurlyandskaya, Modelling of magneto-impedance response of thin film sensitive element in the presence of ferrogel : Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection, Biosensors and Bioelectronics., Vol. 117 (2018) 366-372.

DOI: 10.1016/j.bios.2018.06.032

Google Scholar

[8] A. Asfour, J. Nabias, P. S. Traore, J. P. Yonnet, Practical Use of the GMI Effect to Make a Current Sensor, IEEE Transactions on Magnetics., Vol. 55 (2019).

DOI: 10.1109/tmag.2018.2872622

Google Scholar

[9] T. Wang, C. Lei, J. Lei, Z. Yang, Y. Zhou, Preparation of meander thin-film microsensor and investigation the influence of structural parameters on the giant magnetoimpendance effect, Applied Physiscs A., Vol. 109 (2012) 205-211.

DOI: 10.1007/s00339-012-7034-z

Google Scholar

[10] W. E. Prastyo, F. Maulana, N. Nuryani, B. Purnama, Magneto-impedance in Multilayered [NiFe80/Cu20]4 with modification of the line-length pattern on Cu printed circuit board. Journal of Physics: Conference Series 909 (2017) 012030.

DOI: 10.1088/1742-6596/909/1/012030

Google Scholar

[11] Z. Zhong, H. Zhang, Y. Jing, X. Tang, S. Liu, Magnetic microstructure and magneto-impedance effect in NiFe/FeA1N multilayers films, Sensors and Actuators A: Physical., Vol. 141 (2008) 29 – 33.

DOI: 10.1016/j.sna.2007.07.009

Google Scholar

[12] M. Amiruddin, U. Utari, P. Budi, Fenomena Magneto-impedansi untuk Frekuensi Rendah pada Multilayer [Ni80Fe20/Cu]N Hasil Elektro-deposisi, Jurnal Fisika dan Aplikasinya., Vol. 10 (2014) 95-98.

DOI: 10.12962/j24604682.v10i2.813

Google Scholar

[13] J. J. Beato-Lopez, J. I. Perez-Landazabal, C. Gomez Polo, Magnetic nanoparticle detection method employing non-linear magneto-impedance effects, Journal of Applied Physics., Vol. 121 (2017) 163901-5.

DOI: 10.1063/1.4981536

Google Scholar

[14] Y. H. Ding, K. Xue, W. Y. Wang, & X. Ma, Influence of Aspect Ratio on Giant Magneto-impedance Effect for Fe67Co18Si11B4 Amorphous Ribbons. Acta Metallurgica Sinica (English Letters), Vol. 30 No.12(2017) 1236–1242.

DOI: 10.1007/s40195-017-0617-0

Google Scholar

[15] D. Jagannath, R. Alejandro, M. Pritish, S. Hariharan, P. H. Manh, Magneto-impedance With Enhanced Sensitivity for Highly Sensitive Detection of Nanomag-D Beads, IEEE Transactions on Magnetics, Vol 49 No. 7(2013) 4060-4063.

DOI: 10.1109/tmag.2012.2235414

Google Scholar

[16] H. Kikuchi & C. Sumida, Incident Power Influence on Magneto-impedance Element With Domain-Wall Resonance. IEEE Transactions on Magnetics, Vol. 54 No. 11(2018) 1–5.

DOI: 10.1109/tmag.2018.2854863

Google Scholar

[17] M. H. Phan & H. X. Peng, Giant magneto-impedance materials: Fundamentals and applications. Progress in Materials Science, Vol. 53 No. 2 (2008) 323–420.

DOI: 10.1016/j.pmatsci.2007.05.003

Google Scholar