Stability of High-Spin State of Iron in β-NaFeO2

Article Preview

Abstract:

We investigated the stability of the high-spin state of the iron β-NaFeO2 based on the structural refinement. The oxidation of the Fe2+ ion in the as-synthesized sample is evidenced by its green color. Due to its sensitivity in air and CO2, this compound will decompose into a reddish Fe3+ state. The smaller crystal volume of the decomposed compound is mainly related to the shorter ionic radius of the high-spin state Fe3+ and this result will be compared to the single crystal sample. In contrast to the polycrystalline sample, the decomposition single crystal sample only taking place on the surface of the as-grown crystal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-182

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Takeda, J. Akagi, A. Edagawa, M. Inagaki and S. Naka, A preparation and polymorphic relations of sodium iron oxide (NaFeO2),, Materials Research Bulletin, 15 (1980) 1167-1172.

DOI: 10.1016/0025-5408(80)90081-1

Google Scholar

[2] N. Terada, D. D. Khalyavin, J. M. Perez-Mato, P. Manuel, D. Prabhakaran, A. Daoud-Aladine, P. G. Radaelli, H. S. Suzuki and H. Kitazawa, Magnetic and ferroelectric orderings in multiferroic α-NaFeO2,, Physical Review B, 89 (2014) 184424.

DOI: 10.1103/physrevb.89.184421

Google Scholar

[3] M. Viret, D. Rubi, D. Colson, D. Lebeugle, A. Forget, P. Bonville, G. Dhalenne, R. Saint-Martin, G. Andre and F. Ott, β-NaFeO2, a new room-temperature multiferroic material,, Materials Research Bulletin, 47 (2012) 2294-2298.

DOI: 10.1016/j.materresbull.2012.05.040

Google Scholar

[4] H. Watanabe and M. Fukase, Weak ferromagnetism in β-NaFeO2,, Journal of the Physical Society of Japan 6, 16 (1961) 1181-1184.

Google Scholar

[5] B. H. Toby and R. B. V. Dreele, GSAS-II: the genesis of a modern open-source all purpose crystallography software package,, Journal of Applied Crystallography 46 (2013) 544-549.

DOI: 10.1107/s0021889813003531

Google Scholar

[6] K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,, Journal of Applied Chrystallography 44 (2011) 1272-1276.

DOI: 10.1107/s0021889811038970

Google Scholar

[7] Jain, S. P. Ong, G. Hautier, W. CHen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. A. Persson, The materials project: a materials genome approach to accelerating materials innovation,, Applied Physics Letters Materials 1 (2013) 1.

DOI: 10.1063/1.4812323

Google Scholar

[8] Yanase, S. Onozawa, K. Ogaswara and H. Kobayashi, A novel application of α- and β-sodium ferrite as a CO2-capturing solid in air with water vapor,, Journal of CO2 Utilization 24 (2018) 200-209.

DOI: 10.1016/j.jcou.2017.11.016

Google Scholar

[9] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,, Acta Crystallography, vol. A 32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[10] M. Y. P. Akbar, R. Ishii, A. A. Nugroho, in preparation to publish.

Google Scholar