Blocking Temperature of Magnetite Nanoparticles Fe3O4 Encapsulated Silicon Dioxide SiO2

Article Preview

Abstract:

One of the important characteristics of magnetic materials is the measurement of magnetic characteristics through Superconducting Quantum Interference Device (SQUID) especially magnetization temperature dependence M(T)ZFC and MTFC measurement. In this work, we reported magnetization temperature dependence measurements of magnetite nanoparticles without SiO2 encapsulation (Fe3O4) and magnetite nanoparticles with SiO2 encapsulation (Fe3O4.SiO2) at the application of magnetic fields of 100 Oe. The nanoparticles magnetite was synthesized by co-precipitation method. It was calculated that the blocking temperature of magnetite nanoparticles Fe3O4 without and with SiO2 encapsulation is 118.38 K and 209.03 K, respectively. The blocking temperatures of magnetic nanoparticles increase by SiO2 encapsulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-176

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Leslie-Pelecky, D.L., Zhang, X.Q., and Rieke, R.D., Self-Stabilized Magnetic Colloids: Ultrafine Co Particles in Polymers, J. Appl. Phys. 79 (1996) 5312-5314.

DOI: 10.1063/1.361362

Google Scholar

[2] Dormann J. L., Fiorani D., and Tronc E., Magnetic Relaxation in Fine‐Particle Systems, Advances in Chemical Physics 98 (1997) 283-494.

DOI: 10.1002/9780470141571.ch4

Google Scholar

[3] R.H. Kodama, Magnetic Nanoparticles, J. Magn. Magn. Mater. 200 (1999), 359-372.

Google Scholar

[4] Goya G. F., and Morales M. P., Field dependence of blocking temperature in magnetite nanoparticles, Journal of Metastable and Nanocrystalline Materials 20-21 (2004) 673-678.

DOI: 10.4028/www.scientific.net/jmnm.20-21.673

Google Scholar

[5] Georgia C. Papaefthymiou, Nanoparticle magnetism, Nano Today 4 (2009) 438-447.

Google Scholar

[6] Balaev D.A., S.V. Semenov, A.A. Dubrovskiy, S.S. Yakushkin, V.L. Kirillov, O.N. Martyanovc, Superparamagnetic blocking of an ensemble of magnetite nanoparticles upon interparticle interactions, J. Magn. Magn. Mater. 440 (2017) 199-202.

DOI: 10.1016/j.jmmm.2016.12.046

Google Scholar

[7] T. Saragi, N. Syakir, T. H. Nainggolan, C. Alboin and Risdiana, The Effect of Molar Composition of Co2+ to Structure and Magnetic Properties of CoFe2O4 AIP Conf. Proc. 1554 (2013) 123-125.

DOI: 10.1063/1.4820300

Google Scholar

[8] T. Saragi, L.D. Busrifa, S. Butarbutar, B. Permana, and Risdiana, The Impact of Synthesis Temperature on Magnetite Nanoparticles Size Synthesized by Co-precipitation Method, J. Phys. Conf. Ser. 1013 (2018) 012190-4.

DOI: 10.1088/1742-6596/1013/1/012190

Google Scholar

[9] T. Saragi, B. Permana, M. Safitri, L.D. Busrifa, S.W. Butarbutar, L. Safriani, I. Rahayu, and Risdiana, The Effect of pH and Sintering Treatment on Magnetic Nanoparticles Ferrite Based Synthesized by Coprecipitation Method, J. Phys. Conf. Ser. 1080 (2018) 012019-23.

DOI: 10.1088/1742-6596/1080/1/012019

Google Scholar

[10] E.L. Brito, D.N. Gomes, C.C. Plá Cid, J.C.R. de Araújo, F. Bohn, L. Streck, J. L.C. Fonseca, Superparamagnetic magnetite/IPEC particles, Colloids and Surface A 560 (2019) 376-383.

DOI: 10.1016/j.colsurfa.2018.09.067

Google Scholar

[11] Walton, D., and Williams, Cooling rate of effects in the magnetization of single-domain, J. Geomagn. Geoelectr. 40 (1988) 729-737.

DOI: 10.5636/jgg.40.729

Google Scholar

[12] Togar Saragi, Bayu Permana, Arnold Therigan, Sahrul Hidayat, Norman Syakir and Risdiana, Physical Properties of Encapsulated Iron Oxide, Material Science Forum 996 (2019) 277-281.

DOI: 10.4028/www.scientific.net/msf.966.277

Google Scholar