Investigation to Localized Surface Plasmon Resonance Properties of Non-Noble Metals: Fe, Ni, and Ni80Fe20

Article Preview

Abstract:

In this work, we have investigated the localized surface plasmon resonance profile of promising non-noble metals such as nickel (Ni), iron (Fe), and permalloy (Ni80Fe20) as an alternative plasmonic material. The nanoparticle formed a sphere with varying the diameter from 10 nm to 200 nm with increment 10 nm, and the medium of nanoparticles is air (1+0i). The calculation was carried out by metallic nanoparticle boundary element method package. Furthermore, our result shows that increasing diameter of particles (iron, nickel, and permalloy) would increase the efficiency of ratio scattering to absorption, and the LSPRs peak led to shift to lower energy (red-shift). The ratio of scattering to absorption indicates a strengthening of radiative damping in large particle-size which largely used in biological cell imaging. However, iron’s efficiency much lower than nickel and permalloy. For example, at the highest diameter, such 200 nm, the efficiency of iron is just over around 1.25 while nickel and permalloy well under nearly 2.0. In addition, nickel and permalloy’s LSPR happened in visible range. Our results serve a systematic understanding of the shifting spectrum pattern for prospective ferromagnetic materials

You might also be interested in these eBooks

Info:

Periodical:

Pages:

243-247

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Stefan A. Maier 2007 Plasmonics: Fundamentals and Applications (New York: Springer Science, Business Media LLC).

Google Scholar

[2] P.B. Johnson and R. W. Christy 1972 Optical Constants of the Noble Metals Physical Review B 6 4370–9.

Google Scholar

[3] B. Johnson, P. and W. Christy, R. 1974 Optical constants of transition metals Physical Review B 9 5056–70.

Google Scholar

[4] Kim, Sungi, Kim, Jae-myoung, Park, Jeong-eun and Nam, Jwa-min 2018 Nonnoble-Metal-Based Plasmonic Nanomaterials : Recent Advances and Future Perspectives Adv. Mater. 1704528 1–24.

DOI: 10.1002/adma.201704528

Google Scholar

[5] Zhaleh Pirzadeh, Tavakol Pakizeh, Vladimir Miljkovic, Christoph Langhammer and Alexandre Dmitriev 2014 Plasmon-Interband Coupling in Nickel Nanoantennas ACS Photonics 1 158–62.

DOI: 10.1021/ph4000339

Google Scholar

[6] Chen, Jianing, Albella, Pablo, Pirzadeh, Zhaleh, Alonso-González, Pablo, Huth, Florian, Bonetti, Stefano, Bonanni, Valentina, Åkerman, Johan, Nogués, Josep, Vavassori, Paolo, Dmitriev, Alexandre, Aizpurua, Javier and Hillenbrand, Rainer 2011 Plasmonic nickel nanoantennas Small 7 2341–7.

DOI: 10.1002/smll.201100640

Google Scholar

[7] Pawar, Govinder Singh, Elikkottil, Ameen, Pesala, Bala, Tahir, Asif Ali and Mallick, Tapas Kumar 2019 Plasmonic nickel nanoparticles decorated on to LaFeO 3 photocathode for enhanced solar hydrogen generation International Journal of Hydrogen Energy 44 578–86.

DOI: 10.1016/j.ijhydene.2018.10.240

Google Scholar

[8] Anand Gole, John W. Stone, William R. Gemmill, Hans-Conrad zur Loye and Catherine J. Murphy 2008 Iron Oxide Coated Gold Nanorods: Synthesis, Characterization, and Magnetic Manipulation Langmuir 24 6232–7.

DOI: 10.1021/la703975y

Google Scholar

[9] E. E. Carpenter, J. A. Sims, J. A. Wienmann, W. L. Zhou and C. J. O'Connor 2000 Magnetic properties of iron and iron platinum alloys synthesized via microemulsion techniques Journal of Applied Physics 87 5615–7.

DOI: 10.1063/1.372468

Google Scholar

[10] Gupta, Barun, Pandey, Shashank, Nahata, Anjali, Sensale-Rodriguez, Berardi, Guruswamy, Sivaraman and Nahata, Ajay 2017 Terahertz magneto-plasmonics using cobalt subwavelength aperture arrays Scientific Reports 7 2–7.

DOI: 10.1038/s41598-017-12369-5

Google Scholar

[11] Shao, Zhichao, Han, Xiao, Liu, Yeye, Xu, Wenjuan, Wu, Qiong, Xie, Qiong, Zhao, Yujie and Hou, Hongwei 2019 Metal-dependent photocatalytic activity and magnetic behaviour of a series of 3D Co-Ni metal organic frameworks Dalton Transactions 48 6191–7.

DOI: 10.1039/c9dt00968j

Google Scholar

[12] Jie Cao, Tong Suna and Kenneth T.V. Grattana Gold nanorod-based localized surface plasmon resonance biosensors: A review Sensors and Actuators B 195 (2014) 332–351.

DOI: 10.1016/j.snb.2014.01.056

Google Scholar

[13] Qiu, Yongzhi, Tong, Sheng, Zhang, Linlin, Sakurai, Yumiko, Myers, David R, Hong, Lin, Lam, Wilbur A and Bao, Gang 2017 Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions Nature Communications 8 15594.

DOI: 10.1038/ncomms15594

Google Scholar

[14] Jain, Prashant K., Lee, Kyeong Seok, El-Sayed, Ivan H. and El-Sayed, Mostafa A. 2006 Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine Journal of Physical Chemistry B 110 7238–48.

DOI: 10.1021/jp057170o

Google Scholar

[15] Ferry A. A. Nugroho, Iwan Darmadi, Lucy Cusinato, Arturo Susarrey-Arce, Herman Schreuders, Lars J. Bannenberg, Alice Bastos da Silva Fanta, Shima Kadkhodazadeh, Jakob B. Wagner, Tomasz J. Antosiewicz, Anders Hellman, Vladimir P. Zhdanov, Bernard Dam and Christoph Langhammer 2019 Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection Nature Materials 18 489–95.

DOI: 10.1038/s41563-019-0325-4

Google Scholar

[16] Tymoczko, Anna, Kamp, Marius, Rehbock, Christoph, Kienle, Lorenz, Cattaruzza, Elti, Barcikowski, Stephan and Amendola, Vincenzo 2019 One-step synthesis of Fe–Au core–shell magnetic-plasmonic nanoparticles driven by interface energy minimization Nanoscale Horizons.

DOI: 10.1039/c9nh00332k

Google Scholar

[17] Kostylev, Nikita, Maksymov, Ivan S., Adeyeye, Adekunle O., Samarin, Sergey, Kostylev, Mikhail and Williams, Jim F. 2013 Plasmon-assisted high reflectivity and strong magneto-optical Kerr effect in permalloy gratings Applied Physics Letters 102 121907.

DOI: 10.1063/1.4798657

Google Scholar

[18] Ivan S. Maksymov 2016 Magneto-plasmonic nanoantennas: Basic and applications Reviews in Physics 1 36–51.

DOI: 10.1016/j.revip.2016.03.002

Google Scholar

[19] Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., Feldmann, J., Wilson, O. and Mulvaney, P. 2002 Drastic reduction of plasmon damping in gold nanorods Physical Review Letters 88 774021–4.

DOI: 10.1103/physrevlett.88.077402

Google Scholar

[20] Andreas Trugler and Ulrich Hohenester 2011 MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles Computer Physics Communications 183 370–81.

DOI: 10.1016/j.cpc.2011.09.009

Google Scholar

[21] Tikuišis, Kristupas Kazimieras, Beran, Lukášs, Cejpek, Petr, Uhlířová, Klára, Hamrle, Jaroslav, Vaňatka, Marek, Urbánek, Michal and Veis, Martin 2017 Optical and magneto-optical properties of permalloy thin films in 0.7–6.4 eV photon energy range Materials and Design 114 31–9.

DOI: 10.1016/j.matdes.2016.10.036

Google Scholar

[22] Sharma, Vikash, Chotia, Chanderbhan, Tarachand, Ganesan, Vedachalaiyer and Okram, Gunadhor S. 2017 Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles Physical Chemistry Chemical Physics 19 14096–106.

DOI: 10.1039/c7cp01769c

Google Scholar