Microwave Absorption Characteristic of ZnNd(x)Fe(2-x)O4 System

Article Preview

Abstract:

The ZnNd(x)Fe(2-x)O4 (x = 0.0; 0.010; 0.020 and 0,030) systems were synthesized by solid reaction method from a mixture of ZnO2, Fe2O3 and Nd2O3 powders according to their mole ratio using mechanical milling techniques. In this mixture was added ethanol of 25 ml and then milled for 5 hours, after that sintered at a temperature of 1000 °C for 5 hours. X-ray diffraction patterns showed that the Nd3+ ion substitution in ZnFe2O4 with the concentration of x = 0.0 to 0.02 did not result in changes in ZnFe2O4 phase with cubic structure (space group of Fd-3m). However, the composition of x = 0.030 formed multiphases ZnFe2O4 and NdFeO3 phases. The morphological observation using Scanning Electron Microscope (SEM) showed spherical and uniform particles. Whereas the microwave absorption capability of the sample ZnNd(x)Fe(2-x)O4 system increased with the increasing concentration of x from 91.20% up to 97.80% with the highest absorption is found at a frequency of 10.24 GHz. The dielectric loss of this study is very small around 0.005 up to 0.05. It is hoped that the compound ZnNd0.02Fe1,98O4 can be applied to microwave absorbing agents at high frequencies (X-band range) in antiradar detection systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

280-285

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tripathi, K. C., Abbas, S. M., Alegaonkar, P. S., Sharma R. B., Absorption Properties of Ni-Zn Ferrite Nano-Particle based Nano Composite,. International Journal of Advanced Research in Science. Engineering and Technology. 2(2), 2015, 463-468.

Google Scholar

[2] Malhotra, S., Chitkara, M. and Sandhu, I. S. Microwave Absorption Study of Nano Synthesized Strontium Ferrite Particles in X Band,. International Journal of Signal Processing. Image Processing and Pattern Recognition. 8(10), 2015,115-120.

DOI: 10.14257/ijsip.2015.8.10.13

Google Scholar

[3] Huang, X.; Zhang, J.; Xiao, S., et al., Unique electromagnetic properties of the zinc ferrite nanofiber,, Mater. Lett. 124, 2014, 126–128.

DOI: 10.1016/j.matlet.2014.03.049

Google Scholar

[4] Sharma, N., P. Aghamkar, S. Kumar, M. Bansal, Anju, and R.P. Tondon, Study of Structural and Magnetic Properties of Nd Doped Zinc Ferrites,. Journal of Magnetism and Magnetic Materials. Vol. 369, 2014, 162–167.

DOI: 10.1016/j.jmmm.2014.05.042

Google Scholar

[5] Wang, L., Q. Quan, L. Zhang, L. Cheng, P. Lin, S. Pan, and Z. Zhong. "Microwave Absorption of NdFe Magnetic Powders Tuned with Impedance MatchingV. Journal of Magnetism and Magnetic Materials. Vol. 449, 2018, 385–389.

DOI: 10.1016/j.jmmm.2017.10.067

Google Scholar

[6] Teber, A., K. Cil, T. Yilmaz, B. Eraslan, D. Uysal, G. Surucu, A.H. Baykal, & R. Bansal. Manganese and Zinc Spinel Ferrites Blended with Multi-Walled Carbon Nanotubes as Microwave Absorbing Materials,, Aerospace, 4 (2). (2017).

DOI: 10.3390/aerospace4010002

Google Scholar

[7] Dascalu, G. Pompilian, B. Chazallon, V. Nica, O.F. Caltun, S. Gurlui, C. Focsa, Rareearth doped cobalt ferrite thin films deposited by PLD,, Applied Physics A, 110, 2013, 915-922.

DOI: 10.1007/s00339-012-7196-8

Google Scholar

[8] Xu, J., H. Zou, H. Li, G. Li, S. Gan, and G. Hong. Influence of Nd3+ Substitution on the Microstructure and Electromagnetic Properties of Barium W-Type Hexaferrite,, Journal of Alloys and Compounds. Vol. 490, 2010, 552–556.

DOI: 10.1016/j.jallcom.2009.10.079

Google Scholar

[9] Agami, W. R, Effect of Neodymium Substitution on the Electric and Dielectric Properties of Mn-Ni-Zn Ferrite,, Physics B: Condensed Matter. Vol. 534. 2018, 17–21.

DOI: 10.1016/j.physb.2018.01.021

Google Scholar

[10] Wu, C. P., M. J. Tung, W. S. Ko, Y. P. Wang, S. Y. Tong, and M. D. Yang, Effect of Neodymium Substitutions on Electromagnetic Properties in Low Temperature Sintered NiCuZn Ferrite,, Physica B: Condensed Matter. Vol. 476, 2015, 137–140.

DOI: 10.1016/j.physb.2015.05.022

Google Scholar

[11] Yunasfi, Mashadi, dan A. Mulyawan, Bahan Absorber GelombangMikro Ni(1,5-x)LaxFe1,5O4 denganMetode Sol Gel,, JurnalSainsMateri Indonesia. Vol. 19, 2017, 19-24.

DOI: 10.17146/jsmi.2017.19.1.4131

Google Scholar

[12] Zhang, Z., G. Yao, X. Zhang, J. Ma, and H. Lin. Synthesis and Characterization of Nickel Ferrite Nanoparticles via Planetary Ball Milling Assisted Solid-State Reaction,. Ceramics International. Vol. 41. 2015, 4523–4530.

DOI: 10.1016/j.ceramint.2014.11.147

Google Scholar

[13] Toby B.H, EXPGUI A Graphical User Interface for GSAS J. Appl. Crystallography,. 34, 2001, 210-221.

DOI: 10.1107/s0021889801002242

Google Scholar

[14] Khorrami, S., F. Gharib, G. Mahmoudzadeh, S. Sadat Sepehr, S. Sadat Madani, N. Naderfar, and S. Manie, Synthesis and Characterization of Nanocrystalline Spinel Zinc Ferrite Prepared by Sol-Gel Auto-Combustion Technique,, International Journal of Nano Dimension. Vol. 1, 2011, 221–224.

Google Scholar

[15] Cihangir Kemal Yuzcelik,Radar Abasorbing Material Design,, 1st Lieutenant., Turkish Air Force Industrial Engineering, Turkish Air Force Academy, (1997).

Google Scholar

[16] Marki Microwave, Return Loss Conversion Table,, 215 Vineyard Court, Morgan Hill, CA 95037. www.markimicrowave.com.

Google Scholar

[17] Yunasfi, W. A. Adi, Mashadi, and P. A. Rahmy. Magnetic and Microwave Absorption Properties of Nickel Ferrite (NixFe3-xO4) by HEM Technique,. Malaysian Journal of Fundamental and Applied Sciences. Vol. 13, 2017, 203-206.

DOI: 10.11113/mjfas.v13n3.553

Google Scholar