[1]
Z. Durmus, H. Sozeri, M. S. Toprak and A. Baykal, The Effect of Condensation on the Morphology and Magnetic Properties of Modified Barium Hexaferrite (BaFe12O19),, Nano-Micro Lett. 3 (2) (2011) 108-114.
DOI: 10.1007/bf03353659
Google Scholar
[2]
T. B. Ghzaiel, W. Dhaoui, and F. Mazaleyrat. Magnetic behaviour of Polyani- line/BaFe12O19 composites synthesised by two different pathways. Symposium de Génie Électrique 2014 (Jul 2014) Cachan, France. hal-01065244.
Google Scholar
[3]
H. Belrhazi, M. Y. E. Hafidi and M. E. Hafidi, Permanent Magnets Elaboration from BaFe12O19 Hexaferrite Material: Simulation and Prototype. Res Dev Material Sci. 11(2). RDMS.000757 (2019).
DOI: 10.31031/rdms.2019.11.000757
Google Scholar
[4]
Y. C. Wong, J. Wang, and G B. The, Structural and magnetic studies of SrFe12O19 by sol-gel method, Procedia Engineering 76 ( 2014 ) 45 – 52.
DOI: 10.1016/j.proeng.2013.09.246
Google Scholar
[5]
A. Z. Eikeland, M. Stingaciu, A. H. Mamakhel, M. S. Múzquiz, and M. Christensen, Enhancement of magnetic properties through morphology control of SrFe12O19 nanocrystallites, SCIENTIFIC REPORTS (2018) 8:7325.
DOI: 10.1038/s41598-018-25662-8
Google Scholar
[6]
B. Liu, S. Zhang, B. M. Steenari, and C. Ekberg, Controlling the Composition and Magnetic Properties of Nano-SrFe12O19 Powder Synthesized from Oily Cold Mill Sludge by the Citrate Precursor Method, Materials 12 (2019) 1250.
DOI: 10.3390/ma12081250
Google Scholar
[7]
M. Stingaciu, A. Z. Eikeland, F. H. Gjørup, S. Deledda, and M. Christensen, Optimization of magnetic properties in fast consolidated SrFe12O19 nanocrystallites, RSC Adv., 9 (2019) 12968.
DOI: 10.1039/c9ra02440a
Google Scholar
[8]
P. A. Marino, V. A. Lapshinsky, C. Pupo, J. Matilla, and A. Vega, Obtaining and Structural Characterization of M-type Hexaferrites Doped with Two Cations in the Fe3+ Sites" in MEPhI's Section of the Scientific Session on "Breakthrough directions of scientific research at MEPhI: Development prospects within the Strategic Academic Units,, KnE Engineering (2018) 328–335.
DOI: 10.18502/keg.v3i6.3011
Google Scholar
[9]
Y. E. Gunanto, M. P. Izaak, S. S. Silaban, and W. A. Adi, Effect of milling time on microwave absorption ability on barium-hexaferrite nanoparticles, l of Physics: Conf. Series41011 (2018) 012058.
DOI: 10.1088/1742-6596/1011/1/012058
Google Scholar
[10]
Y. E. Gunanto, L. Cahyadi, and W. A. Adi, Effect of Mn and Ti substitution on the reflection loss characteristic of Ba0.6Sr0.4Fe11-zMnTizO19 (z = 0, 1, 2 and 3), AIP Conference Proceedings 1725 (2016) 020023.
DOI: 10.1063/1.4945477
Google Scholar
[11]
A. González-Angeles, J. Lipka, A. Grusková, J. Sláma, V. Jančárik and V. Slugeň, Magnetic Comparison of BaCa and BaSr Substituted Hexaferrite Powders, J. Phys.: Conf. Ser. 217 (2010) 012137.
DOI: 10.1088/1742-6596/217/1/012137
Google Scholar
[12]
Vaishali V. Soman, V. M. Nanoti, D. K. Kulkarni, and Vijay V. Soman, Effect of substitution of Zn-Ti on magnetic and dielectric properties of BaFe12O19, Physics Procedia 54 (2014) 30 – 37.
DOI: 10.1016/j.phpro.2014.10.033
Google Scholar
[13]
K. Watanabe, K. Kakizaki, and K. Kamishima, Synthesis and Magnetic Properties of (Zn2+Ti4+ ) Substituted W-type and Y-type Ferrites, J. Magn. Soc. Jpn., 41 (2017) 127-131.
DOI: 10.3379/msjmag.1710r001
Google Scholar