Microstructure and Microwave Absorption Characteristics of BaTiO3-CoFe2O4 Composites

Article Preview

Abstract:

Magnetic and dielectric phases like CoFe2O4 and BaTiO3 are both intrinsically capable of absorbing electromagnetic waves. The characteristics of the two phases in a composite structure to obtain the combined effect of the existence of phases as composite components have been investigated. Observation of the microstructure of composites with the composition (1-x)BaTiO3-(x)CoFe2O4 has shown the compact structure of composite sample with an increased the mass density with increasing value of x. No changes in lattice constant of each phase in the composite structure. This ensures that no complete or partial substitution between the ions of each phase has occurred. However, the presence of a material phase in the composite structure influenced the crystallite growth behavior of each phase. The mean crystallite size of the two phases tends to increase, but grew with a different rate. The saturation magnetization value of the composite samples is composition dependent. The value of remanent magnetization and coercivity increases with increasing values of x. All composite samples based on the results of data evaluation data taken by a vector network analyzer (VNA) in X-band frequency, shows the ability to absorb electromagnetic waves in all X-band frequencies. Composite composition determined the peak frequency that gives the maximum reflection loss value. The largest maximum reflection loss value is-40 dB occurring at a frequency of 10.98 GHz from samples with a composition x = 0.5. In conclusion, the composite of CoFe2O4/BaTiO3 system composite can be a promising candidate for electromagnetic wave dampers when the composite is properly designed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

322-329

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Chen, S. Bao, B. Zhang, Y. Chen, W. Chen, c. Wang, Coupling Fe@Fe3O4 nanoparticles with multiple-walled carbon nanotubes with width band electromagnetic absorption performance, Appl. Surf. Sci. (2018).

DOI: 10.1016/j.apsusc.2018.10.148

Google Scholar

[2] J. Xiong, Z. Xiang, J. Zhao, L. Yu, E. Cui, B. Deng, Z. Liu, R. Liu, W. Lu, Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance, Carbon N. Y. (2019).

DOI: 10.1016/j.carbon.2019.07.096

Google Scholar

[3] Y. Wang, X. Gao, X. Wu, W. Zhang, C. Luo, P. Liu, Facile design of 3D hierarchical NiFe2O4/ N-GN/ZnO composite as a high performance electromagnetic wave absorber, Chem. Eng. J. 375 (2019) 121942.

DOI: 10.1016/j.cej.2019.121942

Google Scholar

[4] S. Peng, Suyun Wang, Gazi Hao, Chao Zhu, Yan Zhang, Xiang Lv, Yubing Hu, Wei Jiang, Preparation of magnetic flower-like carbon-matrix composites with efficient electromagnetic wave absorption properties by carbonization of MIL-101(Fe), J. Magn. Magn. Mater. 487 (2019) 165306.

DOI: 10.1016/j.jmmm.2019.165306

Google Scholar

[5] F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Graphene-based microwave absorbing composites : A review and prospective, Compos. Part B, 137 (2018) 260–277.

DOI: 10.1016/j.compositesb.2017.11.023

Google Scholar

[6] H. Luo, R. Gong, X. Wang, Y. Nie, Y. Chen, V.G. Harris, Fe3O4 cladding enhanced magnetic natural resonance and microwave absorption properties of Fe0.65Co0.35 alloy flake, Journal of Alloys and Compounds. 646 (2015) 345-350.

DOI: 10.1016/j.jallcom.2015.05.208

Google Scholar

[7] K. Chandra Babu Naidu, W. Madhuri, Microwave processed bulk and nano NiMg ferrites: A comparative study on X-band electromagnetic interference shielding properties, Mater. Chem. Phys. 187 (2017) 164–176.

DOI: 10.1016/j.matchemphys.2016.11.062

Google Scholar

[8] C. Zhou, C. Wu, M. Yan, A versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption, Chem. Eng. J. 370 (2019) 988–996.

DOI: 10.1016/j.cej.2019.03.295

Google Scholar

[9] V. Nandwana, R. Zhou, J. Mohapatra, S. Kim, P.V. Prasad, J. P. Liu, V. P. Dravid, Exchange coupling in soft magnetic nanostructures and its direct effect on their theranostic properties, ACS Appl. Mater. Interfaces. 10 (2018) 27233–27243.

DOI: 10.1021/acsami.8b09346

Google Scholar

[10] H.Y. Liu, Y.S. Li, Synthesis and microwave absorbing properties of Cobalt ferrite, IOP Conf. Series: Materials Science and Engineering. 292 (2018) 012062.

DOI: 10.1088/1757-899x/292/1/012062

Google Scholar

[11] Z. Wang, J. Zou, Z. Ding, J. Wu, P. Wang, S. Jin, H. Bi, Magnetic and microwave absorption properties of Ni microcrystals with hierarchical branch-like and flowers-like shapes, Mater. Chem. Phys. 142 (2013) 119–123.

DOI: 10.1016/j.matchemphys.2013.07.003

Google Scholar

[12] N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao, Z. Guo, Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods, Carbon N. Y. (2019).

DOI: 10.1016/j.carbon.2019.01.028

Google Scholar

[13] A. Olad, S. Shakoori, Electromagnetic interference attenuation and shielding effect of quaternary Epoxy-PPy/Fe3O4-ZnO nanocomposite as a broad band microwave-absorber, J. Magn. Magn. Mater. 458 (2018) 335–345.

DOI: 10.1016/j.jmmm.2018.03.050

Google Scholar

[14] H. Yang, T. Ye, Y. Lin, M. Liu, Excellent microwave absorption property of ternary composite: Polyaniline-BaFe12O19-CoFe2O4 powders, J. Alloys Compd. (2015).

DOI: 10.1016/j.jallcom.2015.08.272

Google Scholar

[15] M. Rianna, M. Situmorang, C. Kurniawan, A.P. Tetuko, E.A. Setiadi, M. Ginting, P. Sebayang The effect of Mg-Al additive composition on microstructure, magnetic properties, and microwave absorption on BaFe12-2xMgxAlxO19 (x=0–0.5) material synthesized from natural iron sand, Mater. Lett. 256 (2019) 126612.

DOI: 10.1016/j.matlet.2019.126612

Google Scholar

[16] P. Sardarian, H. Naffakh-Moosavy, S.S.S. Afghahi, A newly-designed magnetic/dielectric [Fe3O4/BaTiO3@MWCNT] nanocomposite system for modern electromagnetic absorption applications, J. Magn. Magn. Mater. 441 (2017) 257–263.

DOI: 10.1016/j.jmmm.2017.05.074

Google Scholar

[17] H. Zhang, D. Zeng, Z. Liu, The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy, J. Magn. Magn. Mater. 322 (2010) 2375-2380.

DOI: 10.1016/j.jmmm.2010.02.040

Google Scholar

[18] L. Zhang, J. Zhai, W. Mo, X. Yao, Electric and magnetic properties of (x)CoFe2O4-(1-x)BaTiO3 thick film prepared by electrophoretic deposition technique, Solid State Sci. 13 (2013) 321–325.

DOI: 10.1016/j.solidstatesciences.2010.11.023

Google Scholar

[19] M. Atif, S. Ahmed, M. Nadeem, M.K. Ali, M. Idrees, R. Grössinger, Role of competing phases in the structural , magnetic and dielectric relaxation for (1-x)CoFe2O4-(x) BaTiO3 composites, Ceram. Int. (2016).

DOI: 10.1016/j.ceramint.2016.06.082

Google Scholar

[20] M. Atif, M. Nadeem, W. Khalid, Z. Ali, Structural, magnetic and impedance spectroscopy analysis of (0.7)CoFe2O4+(0.3)BaTiO3 magnetoelectric composite, Mater. Res. Bull. 107 (2018) 171–179.

DOI: 10.1016/j.materresbull.2018.07.026

Google Scholar