[1]
Tiberto P, et al. Magnetic properties of jet-printer inks containing dispersed magnetite nanoparticles 2013:2–7. https://doi.org/10.1140/epjb/e2013-30983-8.
Google Scholar
[2]
Zhou X, et al. Preparation and characterization of Fe3O4-CNTs magnetic nanocomposites for potential application in functional magnetic printing ink. Compos Part B 2016;89:295–302. https://doi.org/10.1016/j.compositesb.2015.11.041.
DOI: 10.1016/j.compositesb.2015.11.041
Google Scholar
[3]
Rahmawati R, et al. The Synthesis of Fe3O4/MWCNT Nanocomposites From Local Iron Sands For Electrochemical Sensors 2018;020016. https://doi.org/10.1063/1.5034547.
Google Scholar
[4]
Darvina Y, et al. Synthesis of magnetite nanoparticles from iron sand by ball- milling 2019. https://doi.org/10.1088/1742-6596/1185/1/012017.
DOI: 10.1088/1742-6596/1185/1/012017
Google Scholar
[5]
R. Ramli, et al. Magnetic properties of Fe3O4 nanoparticles synthesized from natural iron sand via ball-milling process 2019. https://doi.org/10.1088/1742-6596/1185/1/012002.
DOI: 10.1088/1742-6596/1185/1/012002
Google Scholar
[6]
Li S, et al. Recyclable CNTs/Fe3O4 magnetic nanocomposites as adsorbents to remove bisphenol A from water and their regeneration. Chem Eng J 2015;260:231–9. https://doi.org/10.1016/j.cej.2014.09.032.
DOI: 10.1016/j.cej.2014.09.032
Google Scholar
[7]
Zhao Y, et al. Journal of Colloid and Interface Science Hierarchical MWCNTs/Fe3O4/PANI magnetic composite as adsorbent for methyl orange removal. J Colloid Interface Sci 2015;450:189–95. https://doi.org/10.1016/j.jcis.2015.03.015.
DOI: 10.1016/j.jcis.2015.03.015
Google Scholar
[8]
Yan M, et al. Multifunctional nanotube-like Fe3O4/PANI/CDs/Ag hybrids : An efficient SERS substrate and nanocatalyst. Mater Sci Eng C 2016;58:568–75. https://doi.org/10.1016/j.msec.2015.09.029.
DOI: 10.1016/j.msec.2015.09.029
Google Scholar
[9]
Mondal S, et al. Reduced Graphene Oxide/Fe3O4/Polyaniline Nanostructures as Electrode Materials for All-Solid-State Hybrid Supercapacitor 2017. https://doi.org/10.1021/acs.jpcc.6b10978.
DOI: 10.1021/acs.jpcc.6b10978.s001
Google Scholar
[10]
Wang X, et al. Applied Surface Science Fe3O4@polyaniline yolk-shell micro/nanospheres as bifunctional materials for lithium storage and electromagnetic wave absorption. Appl Surf Sci 2018;427:1054–63. https://doi.org/10.1016/j.apsusc.2017.09.118.
DOI: 10.1016/j.apsusc.2017.09.118
Google Scholar
[11]
Sunaryono, et al. The Influence of Alternating Magnetic Field Frequency on Magneto- Thermal Behavior of Mn0.25Fe2.75O4@PANI Material 2019:0–9. https://doi.org/10.1088/1757-899X/515/1/012035.
DOI: 10.1088/1757-899x/515/1/012035
Google Scholar
[12]
Ma Y, et al. Fabrication of electromagnetic Fe3O4@polyaniline nanofibers with high aspect ratio. RSC Adv 2015;5:9986–92. https://doi.org/10.1039/C4RA14723E.
Google Scholar
[13]
Xu B, et al. Analytical Methods Magnetic solid-phase extraction based on Fe3O4@polyaniline particles followed by ultrafast liquid chromatography for determination of Sudan dyes in environmental water samples 2015. https://doi.org/10.1039/C4AY02645D.
DOI: 10.1039/c4ay02645d
Google Scholar
[14]
Li X, et al.. One-pot synthesis of polyaniline/Fe3O4 nanocomposite in ionic liquid : electrical conductivity and magnetic studies 2019;01059:0–3.
Google Scholar
[15]
Taufiq A, et al. Nanoscale Clustering and Magnetic Properties of MnxFe3−xO4 Particles Prepared from Natural Magnetite. J Supercond Nov Magn 2015;28:2855–63. https://doi.org/10.1007/s10948-015-3111-9.
DOI: 10.1007/s10948-015-3111-9
Google Scholar
[16]
Soysal F, et al. Synthesis of GO-Fe3O4-PANI nanocomposite with excellent NIR absorption property 2019;578. https://doi.org/10.1016/j.colsurfa.2019.123623.
DOI: 10.1016/j.colsurfa.2019.123623
Google Scholar
[17]
Aarthi A, et al. Detection and Degradation of Leachate in Groundwater Using Ag modified Fe3O4 Nanoparticle as Sensor. PT NU SC. J Mol Liq 2017. https://doi.org/10.1016/j.molliq.2017.12.103.
Google Scholar
[18]
Ali Q, et al. ScienceDirect Novel Multifunctional Carbon Nanotube Containing Silver and Iron Oxide Nanoparticles for Antimicrobial Applications in Water Treatment. Mater Today Proc 2017;4:57–64. https://doi.org/10.1016/j.matpr.2017.01.193.
DOI: 10.1016/j.matpr.2017.01.193
Google Scholar
[19]
Liu E, et al. Tat-functionalized Ag-Fe3O4 nano-composites as tissue-penetrating vehicles for tumor magnetic targeting and drug delivery. Acta Pharm Sin B 2018. https://doi.org/10.1016/j.apsb.2018.07.012.
DOI: 10.1016/j.apsb.2018.07.012
Google Scholar
[20]
Zhao X, et al. Hybrid structures of Fe3O4 and Ag nanoparticles on Si nanopillar arrays substrate for SERS applications. Mater Chem Phys 2018. https://doi.org/10.1016/j.matchemphys.2018.04.082.
DOI: 10.1016/j.matchemphys.2018.04.082
Google Scholar
[21]
Vorokh AS. Scherrer formula : estimation of error in determining small nanoparticle size 2018;9:364–9. https://doi.org/10.17586/2220-8054-2018-9-3-364-369.
DOI: 10.17586/2220-8054-2018-9-3-364-369
Google Scholar
[22]
Sun Y, et al. Preparation and electromagnetic wave absorption properties of core–shell structured Fe3O4–polyaniline nanoparticles 2013:22554–9. https://doi.org/10.1039/c3ra43559h.
DOI: 10.1039/c3ra43559h
Google Scholar
[23]
Ebrahim S, et al. Electrochemical sensor based on polyaniline nanofibers/single wall carbon nanotubes composite for detection of malathion. Synth Met 2014;190:13–9. https://doi.org/10.1016/j.synthmet.2014.01.021.
DOI: 10.1016/j.synthmet.2014.01.021
Google Scholar
[24]
Armelin E, et al. Partial replacement of metallic zinc dust in heavy duty protective coatings by conducting polymer. Prog Org Coatings 2010;69:26–30. https://doi.org/10.1016/j.porgcoat.2010.04.023.
DOI: 10.1016/j.porgcoat.2010.04.023
Google Scholar
[25]
Bahtiar S, et al. Synthesis, Investigation on Structural and Magnetic Behaviors of Spinel M-Ferrite [M = Fe; Zn; Mn] Nanoparticles from Iron Sand. IOP Conf Ser Mater Sci Eng 2017;202:012052. https://doi.org/10.1088/1757-899X/202/1/012052.
DOI: 10.1088/1757-899x/202/1/012052
Google Scholar
[26]
Escamilla-pérez AM, et al. Journal of Magnetism and Magnetic Materials synthesized by sol – gel method. J Magn Magn Mater 2015;374:474–8. https://doi.org/10.1016/ j.jmmm.2014.08.086.
Google Scholar
[27]
Jiang C, et al. Applied Surface Science Self-assembled thin films of Fe3O4-Ag composite nanoparticles for spintronic applications. Appl Surf Sci 2017;419:692–6. https://doi.org/10.1016/j.apsusc.2017.05.116.
DOI: 10.1016/j.apsusc.2017.05.116
Google Scholar