Preparation and Characterization of Magnetite/PEG Nanoparticles Combined with Curcumin for Drug Delivery Application

Article Preview

Abstract:

In this work, the synthesis of magnetite/PEG nanoparticles combined with curcumin was conducted by using a simple coprecipitation method. The samples obtained were characterized using XRD, FTIR, and VSM for their structural and magnetic properties. Meanwhile, investigation of the potential as drug delivery agents was done through the drug release test using doxorubicin. The diffraction data analysis presented the addition of curcumin slightly decreased the diffraction peak of magnetite compared to without curcumin. The crystallite sizes of the magnetite/PEG and magnetite/PEG/curcumin were 13.9 nm and 13.7 nm, respectively. The functional group of the magnetite/PEG showed the presence of Fe-O bonds at a wavenumber of 587 cm-1 and 421 cm-1 originating from magnetite. Meanwhile, C-O-C and C-H bonds were observed at wavenumbers of 1108 cm-1 and 2883 cm-1 arising from PEG. Despite Fe-O, C-O-C, and C-H bonds, in magnetite/PEG/curcumin, it was also detected C=O bond at a wavenumber of 1621 cm-1, indicating the presence of the curcumin. Regarding the magnetic properties, the saturation magnetization value of the magnetite/PEG nanoparticles decreased after adding curcumin. Interestingly, the results of the doxorubicin drug release of the magnetite/PEG and magnetite/PEG/curcumin nanoparticles showed excellent performance as drug delivery agents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

299-307

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians. 68 (2018) 394–424.

DOI: 10.3322/caac.21492

Google Scholar

[2] I.R. Kleckner, C. Kamen, J.S. Gewandter, N.A. Mohile, C.E. Heckler, E. Culakova, C. Fung, M.C. Janelsins, M. Asare, P.-J. Lin, P.S. Reddy, J. Giguere, J. Berenberg, S.R. Kesler, K.M. Mustian, Effects of exercise during chemotherapy on chemotherapy-induced peripheral neuropathy: a multicenter, randomized controlled trial, Supportive Care in Cancer. 26 (2018) 1019–1028.

DOI: 10.1007/s00520-017-4013-0

Google Scholar

[3] M. Ghiaci, S. Farjadfar, Y. Kamari and P. Ghiaci P. In-Vitro Study on Organic-Inorganic Hybrid Composite of Graphene Oxide-Fe3O4/Doxorubicin/TiO2 as a Targeted Drug-Delivery System. MJ Dent. 2 (2017) 017.

Google Scholar

[4] L. Zeng, Y. Pan, Y. Tian, X. Wang, W. Ren, S. Wang, G. Lu, A. Wu, Doxorubicin-loaded NaYF4:Yb/Tm–TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers, Biomaterials. 57 (2015) 93–106.

DOI: 10.1016/j.biomaterials.2015.04.006

Google Scholar

[5] R. Raliya, T. Singh Chadha, K. Haddad, P. Biswas, Perspective on Nanoparticle Technology for Biomedical Use, Current Pharmaceutical Design. 22 (2016) 2481–2490.

DOI: 10.2174/1381612822666160307151409

Google Scholar

[6] V.V. Mody, A. Cox, S. Shah, A. Singh, W. Bevins, H. Parihar, Magnetic nanoparticle drug delivery systems for targeting tumor, Applied Nanoscience. 4 (2014) 385–392.

DOI: 10.1007/s13204-013-0216-y

Google Scholar

[7] D. Xu, R. Xie, T. Xu, X. Guo, Q. Liu, J. Liu, W. Lv, X. Jing, H. Zhang, J. Wang, Combination therapeutics of doxorubicin with Fe3O4@chitosan@phytic acid nanoparticles for multi-responsive drug delivery, RSC Advances. 6 (2016) 88248–88254.

DOI: 10.1039/c6ra21431b

Google Scholar

[8] Q. Zhang, J. Liu, K. Yuan, Z. Zhang, X. Zhang, X. Fang, A multi-controlled drug delivery system based on magnetic mesoporous Fe3O4 nanopaticles and a phase change material for cancer thermo-chemotherapy, Nanotechnology. 28 (2017) 405101.

DOI: 10.1088/1361-6528/aa883f

Google Scholar

[9] M. Asfer, S.K. Saroj, P.K. Panigrahi, Retention of ferrofluid aggregates at the target site during magnetic drug targeting, Journal of Magnetism and Magnetic Materials. 436 (2017) 47–56.

DOI: 10.1016/j.jmmm.2017.04.020

Google Scholar

[10] R. Gómez-Sotomayor, S. Ahualli, J.L. Viota, K. Rudzka, Á.V. Delgado, Iron/Magnetite Nanoparticles as Magnetic Delivery Systems for Antitumor Drugs, Journal of Nanoscience and Nanotechnology. 15 (2015) 3507–3514.

DOI: 10.1166/jnn.2015.9856

Google Scholar

[11] Y. Junejo, A. Baykal, H. Sözeri, Simple hydrothermal synthesis of Fe3O4-PEG nanocomposite, Open Chemistry. 11 (2013) 0281-9.

DOI: 10.2478/s11532-013-0281-9

Google Scholar

[12] Y.-D. Chiang, S. Dutta, C.-T. Chen, Y.-T. Huang, K.-S. Lin, J.C.S. Wu, N. Suzuki, Y. Yamauchi, K.C.-W. Wu, Functionalized Fe3O4@Silica Core-Shell Nanoparticles as Microalgae Harvester and Catalyst for Biodiesel Production, ChemSusChem. 8 (2015) 789–794.

DOI: 10.1002/cssc.201402996

Google Scholar

[13] A. Sammaiah, W. Huang, X. Wang, Synthesis of magnetic Fe3O4/graphene oxide nanocomposites and their tribological properties under magnetic field, Materials Research Express. 5 (2018) 105006.

DOI: 10.1088/2053-1591/aadaab

Google Scholar

[14] X.L. Liu, H.M. Fan, J.B. Yi, Y. Yang, E.S.G. Choo, J.M. Xue, D.D. Fan, J. Ding, Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents, Journal of Materials Chemistry. 22 (2012) 8235.

DOI: 10.1039/c2jm30472d

Google Scholar

[15] S. Sunaryono, A. Taufiq, N. Mufti, H. Susanto, E.G.R. Putra, S. Soontaranon, D. Darminto, Contributions of TMAH Surfactant on Hierarchical Structures of PVA/Fe3O4–TMAH Ferrogels by Using SAXS Instrument, Journal of Inorganic and Organometallic Polymers and Materials. 28 (2018) 2206–2212.

DOI: 10.1007/s10904-018-0939-z

Google Scholar

[16] J. Markhulia, V. Mikelashvili, S. Kekutia, L. Saneblidze, Z. Jabua, D. Daraselia, D. Jafaridze, Some physical parameters of PEG-modified magnetite nanofluids, J. Pharm. Appl. Chem. 2 (2016) 33–37.

DOI: 10.18576/jpac/020201

Google Scholar

[17] A. Deb, R. Vimala, Camptothecin loaded graphene oxide nanoparticle functionalized with polyethylene glycol and folic acid for anticancer drug delivery, Journal of Drug Delivery Science and Technology. 43 (2018) 333–342.

DOI: 10.1016/j.jddst.2017.10.025

Google Scholar

[18] M. Anbarasu, M. Anandan, E. Chinnasamy, V. Gopinath, K. Balamurugan, Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 135 (2015) 536–539.

DOI: 10.1016/j.saa.2014.07.059

Google Scholar

[19] H. Nosrati, N. Sefidi, A. Sharafi, H. Danafar, H. Kheiri Manjili, Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug, Bioorganic Chemistry. 76 (2018) 501–509.

DOI: 10.1016/j.bioorg.2017.12.033

Google Scholar

[20] W. Scarano, P. de Souza, M.H. Stenzel, Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer, Biomaterials Science. 3 (2015) 163–174.

DOI: 10.1039/c4bm00272e

Google Scholar

[21] K. Kalantari, M.B. Ahmad, K. Shameli, M.Z.B. Hussein, R. Khandanlou, H. Khanehzaei, Size-Controlled Synthesis of Fe3O4 Magnetic Nanoparticles in the Layers of Montmorillonite, Journal of Nanomaterials. 2014 (2014) 1–9.

DOI: 10.1155/2014/739485

Google Scholar

[22] A. Nikmah, A. Taufiq, A. Hidayat, Synthesis and Characterization of Fe3O4/SiO2 nanocomposites, IOP Conference Series: Earth and Environmental Science. 276 (2019) 012046.

DOI: 10.1088/1755-1315/276/1/012046

Google Scholar

[23] J. Safaei-Ghomi, F. Eshteghal, Nano-Fe3O4/PEG/succinic anhydride: A novel and efficient catalyst for the synthesis of benzoxanthenes under ultrasonic irradiation, Ultrasonics Sonochemistry. 38 (2017) 488–495.

DOI: 10.1016/j.ultsonch.2017.03.047

Google Scholar

[24] D. Arista, A. Rachmawati, N. Ramadhani, R. Eko Saputro, A. Taufiq, Sunaryono, Antibacterial Performance of Fe3O4/PEG-4000 Prepared by Co-precipitation Route, IOP Conference Series: Materials Science and Engineering. 515 (2019) 012085.

DOI: 10.1088/1757-899x/515/1/012085

Google Scholar

[25] P.Q. Thong, Structure and properties of Fe3O4 nanoparticles coated by pla-peg copolymer with and without loading of curcumin, Vietnam Journal of Science and Technology. 54 (2018) 268.

DOI: 10.15625/2525-2518/54/1a/11837

Google Scholar

[26] K. Zomorodian, H. Veisi, M. Mousavi, M. Ataabadi, S. Yazdanpanah, M.J. Bagheri, A. Mehr, S. Hemmati, H. Veisi, Modified magnetic nanoparticles by PEG-400-immobilized Ag nanoparticles (Fe3O4@PEG–Ag) as a core/shell nanocomposite and evaluation of its antimicrobial activity, International Journal of Nanomedicine. Volume 13 (2018) 3965–3973.

DOI: 10.2147/ijn.s161002

Google Scholar

[27] I. Karimzadeh, M. Aghazadeh, T. Doroudi, M.R. Ganjali, P.H. Kolivand, Superparamagnetic Iron Oxide (Fe3O4) Nanoparticles Coated with PEG/PEI for Biomedical Applications: A Facile and Scalable Preparation Route Based on the Cathodic Electrochemical Deposition Method, Advances in Physical Chemistry. 2017 (2017) 1–7.

DOI: 10.1155/2017/9437487

Google Scholar

[28] H. Nosrati, N. Sefidi, A. Sharafi, H. Danafar, H. Kheiri Manjili, Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug, Bioorganic Chemistry. 76 (2018) 501–509.

DOI: 10.1016/j.bioorg.2017.12.033

Google Scholar

[29] Q.X. Thong, R. Biabanikhankahdani, K.L. Ho, N.B. Alitheen, W.S. Tan, Thermally-responsive Virus-like Particle for Targeted Delivery of Cancer Drug, Scientific Reports. 9 (2019) 40388-x.

DOI: 10.1038/s41598-019-40388-x

Google Scholar