Characterization of a Thermo-Sensitive Injectable Hydrogel as an Iloprost Delivery System for Dental Use

Article Preview

Abstract:

Iloprost increases the expression of angiogenic factors and increases dental pulp flow, suggesting the potential of iloprost as a biomolecule to promote dental pulp regeneration. However, the methods to clinically deliver iloprost into the limited root canal area of a tooth and control its release are limited. The purpose of this study was to prepare a thermo-sensitive injectable hydrogel from pluronic F127 (PF127) for delivering iloprost to induce dental pulp regeneration. The PF127 hydrogels were fabricated using thermal crosslinking. The maximum cumulative release iloprost from the hydrogel at 25°C was 60%. No significant cytotoxicity or morphological changes were observed in human dental pulp cells (HDPCs) at any of the PF127 gel concentrations of the iloprost carrier. Moreover, the effect of the 20%wt PF127 gels containing iloprost on the expression of VEGF in HDPCs increased vascular endothelial growth factor (VEGF) gene expression at 72 h. The thermo-sensitive hydrogel at 20%wt PF127 containing iloprost could be used for prolonged drug release in dental applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-398

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release, Chem Rev. 99 (1999) 3181-3198.

DOI: 10.1021/cr940351u

Google Scholar

[2] N. Rescignano, E. Fortunati, S. Montesano, C. Emiliani, J.M. Kenny, S. Martino, I. Armentano, PVA bio-nanocomposites: A new take-off using cellulose nanocrystals and PLGA nanoparticles, Carbohydr Polym. 99 (2014) 47-58.

DOI: 10.1016/j.carbpol.2013.08.061

Google Scholar

[3] S. Thumsing, N. Israsena, C. Boonkrai, P. Supaphol, Preparation of bioactive glycosylated glial cell‐line derived neurotrophic factor‐loaded microspheres for medical applications, J. Appl. Polym. Sci. 131 (2014). 1-9.

DOI: 10.1002/app.40168

Google Scholar

[4] C.N. Limjeerajarus, S. Sonntana, L. Pajaree, C. Kansurang, S. Pitt, T. Saowapa, P. Prasit, Prolonged release of iloprost enhances pulpal blood flow and dentin bridge formation in a rat model of mechanical tooth pulp exposure, J. Oral Sci. 61 (2019) 17-368.

DOI: 10.2334/josnusd.17-0368

Google Scholar

[5] T. Maraldi, M. Riccio, A. Pisciotta, M. Zavatti, G. Carnevale, F. Beretti, A. De Pol, Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization, Stem Cell Res Ther. 4 (2013) 53.

DOI: 10.1186/scrt203

Google Scholar

[6] C.N. Limjeerajarus, T. Osathanon, J. Manokawinchoke, P. Pavasant, Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo, J. Endod. 40 (2014) 925-930.

DOI: 10.1016/j.joen.2013.10.025

Google Scholar

[7] B. Lasota, S. Skoczyński, K. Mizia-Stec, W. Pierzchała, The use of iloprost in the treatment of out of proportion,pulmonary hypertension in chronic obstructive pulmonary disease, Int J Clin Pharm. 35 (2013) 313-315.

DOI: 10.1007/s11096-013-9762-3

Google Scholar

[8] S. Seang, P. Pavasant, V. Everts, C.N. Limjeerajarus, Prostacyclin Analog Promotes Human Dental Pulp Cell Migration via a Matrix Metalloproteinase 9–related Pathway, J Endod. 45 (2019) 873-881.

DOI: 10.1016/j.joen.2019.03.020

Google Scholar

[9] B. Chang, N. Ahuja, C. Ma, X. Liu, Injectable scaffolds: Preparation and application in dental and craniofacial regeneration, Mater Sci Eng R Rep. 111(2017), 1-26.

DOI: 10.1016/j.mser.2016.11.001

Google Scholar

[10] M.A. Ward, T.K. Georgiou, Thermoresponsive polymers for biomedical applications, Polymers. 3 (2011) 1215-1242.

DOI: 10.3390/polym3031215

Google Scholar

[11] M.K. Sinha, J. Gao, C.E. Stowell, Y. Wang, Synthesis and biocompatibility of a biodegradable and functionalizable thermo-sensitive hydrogel, Regen Biomater. 2 (2015) 177-185.

DOI: 10.1093/rb/rbv009

Google Scholar

[12] A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf B Biointerfaces. 75 (2010) 1-18.

DOI: 10.1016/j.colsurfb.2009.09.001

Google Scholar

[13] M. Bercea, R.N. Darie, L.E. Niţă, S. Morariu, Temperature responsive gels based on Pluronic F127 and poly (vinyl alcohol), Ind. Eng. Chem. Res. 50 (2011) 4199-4206.

DOI: 10.1021/ie1024408

Google Scholar

[14] B. Jeong, S.W. Kim, Y.H. Bae, Thermosensitive sol–gel reversible hydrogels, Adv Drug Deliv Rev. 64 (2012) 154-162.

DOI: 10.1016/j.addr.2012.09.012

Google Scholar

[15] J.J. Escobar-Chávez, M. López-Cervantes, A. Naik, Y. Kalia, D. Quintanar-Guerrero, A. Ganem-Quintanar, Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations, J Pharm Pharm Sci. 9 (2006) 339-58.

DOI: 10.18433/j3201z

Google Scholar

[16] L. Yu, J. Ding, Injectable hydrogels as unique biomedical materials, Chem Soc Rev. 37 (2008) 1473-1481.

DOI: 10.1039/b713009k

Google Scholar

[17] S. Nair, N.S. Remya, S. Remya, P.D. Nair, A biodegradable in situ injectable hydrogel based on chitosan and oxidized hyaluronic acid for tissue engineering applications, Carbohydr. Polym. 85 (2011) 838-844.

DOI: 10.1016/j.carbpol.2011.04.004

Google Scholar

[18] S.D. Desai, J. Blanchard, In vitro evaluation of pluronic F127-based controlled-release ocular delivery systems for pilocarpine, J Pharm Sci. 87 (1998) 226-230.

DOI: 10.1021/js970090e

Google Scholar

[19] E.C. Cardoso, S.R. Scagliusi, G.F. Moraes, L.S. Ono, D.F. Parra, A.B. Lugão, Density crosslink study of gamma irradiated LDPE predicted by gel-fraction, swelling and glass transition temperature characterization, Associacao Brasileira de Energia Nuclear. (2011) ISBN: 978-85-99141-04-5.

Google Scholar

[20] L. Zhao, X. Li, J. Zhao, S. Ma, X. Ma, D. Fan, Y. Liu, A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: Its characterization and biocompatibility, Mater Sci Eng C Mater Biol Appl. 68 (2016) 317-326.

DOI: 10.1016/j.msec.2016.05.108

Google Scholar

[21] Y. Lee, H.J. Chung, S. Yeo, C.H. Ahn, H. Lee, P.B. Messersmith, T.G. Park, Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction, Soft Matter. 6 (2010) 977-983.

DOI: 10.1039/b919944f

Google Scholar

[22] E. Gioffredi, M. Boffito, S. Calzone, S.M. Giannitelli, A. Rainer, M. Trombetta, V. Chiono, Pluronic F127 hydrogel characterization and biofabrication in cellularized constructs for tissue engineering applications, Procedia CIRP. 49 (2016) 125-132.

DOI: 10.1016/j.procir.2015.11.001

Google Scholar

[23] I.M. Diniz, C. Chen, X. Xu, S. Ansari, H.H. Zadeh, M.M. Marques, A. Moshaverinia, Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells, J Mater Sci Mater Med. 26 (2015) 153.

DOI: 10.1007/s10856-015-5493-4

Google Scholar

[24] S. Nie, W.W. Hsiao, W. Pan, Z. Yang, Thermoreversible Pluronic® F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies, Int J Nanomedicine. 6 (2011) 151.

DOI: 10.2147/ijn.s15057

Google Scholar

[25] G. Wanka, H. Hoffmann, W. Ulbricht, Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions, Macromolecules. 27 (1994) 4145-4159.

DOI: 10.1021/ma00093a016

Google Scholar

[26] V. Vijayakumar, K. Subramanian, Diisocyanate mediated polyether modified gelatin drug carrier for controlled release, Saudi Pharm J. 22 (2014) 43-51.

DOI: 10.1016/j.jsps.2013.01.005

Google Scholar

[27] J.G. Wenzel, K.S. Balaji, K. Koushik, C. Navarre, S.H. Duran, C.H. Rahe, U.B. Kompella, Pluronic® F127 gel formulations of Deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle, J Control Release. 85 (2002) 51-59.

DOI: 10.1016/s0168-3659(02)00271-7

Google Scholar

[28] C.Y. Yu, P.V. Abbott, Responses of the pulp, periradicular and soft tissues following trauma to the permanent teeth, Aust Dent J. 61 (2016) 39-58.

DOI: 10.1111/adj.12397

Google Scholar

[29] S. Seang, P. Pavasant, C.N. Limjeerajarus, Iloprost Induces Dental Pulp Angiogenesis in a Growth Factor–free 3-Dimensional Organ Culture System, J Endod. 44 (2018) 759-764.

DOI: 10.1016/j.joen.2018.02.001

Google Scholar