[1]
K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release, Chem Rev. 99 (1999) 3181-3198.
DOI: 10.1021/cr940351u
Google Scholar
[2]
N. Rescignano, E. Fortunati, S. Montesano, C. Emiliani, J.M. Kenny, S. Martino, I. Armentano, PVA bio-nanocomposites: A new take-off using cellulose nanocrystals and PLGA nanoparticles, Carbohydr Polym. 99 (2014) 47-58.
DOI: 10.1016/j.carbpol.2013.08.061
Google Scholar
[3]
S. Thumsing, N. Israsena, C. Boonkrai, P. Supaphol, Preparation of bioactive glycosylated glial cell‐line derived neurotrophic factor‐loaded microspheres for medical applications, J. Appl. Polym. Sci. 131 (2014). 1-9.
DOI: 10.1002/app.40168
Google Scholar
[4]
C.N. Limjeerajarus, S. Sonntana, L. Pajaree, C. Kansurang, S. Pitt, T. Saowapa, P. Prasit, Prolonged release of iloprost enhances pulpal blood flow and dentin bridge formation in a rat model of mechanical tooth pulp exposure, J. Oral Sci. 61 (2019) 17-368.
DOI: 10.2334/josnusd.17-0368
Google Scholar
[5]
T. Maraldi, M. Riccio, A. Pisciotta, M. Zavatti, G. Carnevale, F. Beretti, A. De Pol, Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization, Stem Cell Res Ther. 4 (2013) 53.
DOI: 10.1186/scrt203
Google Scholar
[6]
C.N. Limjeerajarus, T. Osathanon, J. Manokawinchoke, P. Pavasant, Iloprost up-regulates vascular endothelial growth factor expression in human dental pulp cells in vitro and enhances pulpal blood flow in vivo, J. Endod. 40 (2014) 925-930.
DOI: 10.1016/j.joen.2013.10.025
Google Scholar
[7]
B. Lasota, S. Skoczyński, K. Mizia-Stec, W. Pierzchała, The use of iloprost in the treatment of out of proportion,pulmonary hypertension in chronic obstructive pulmonary disease, Int J Clin Pharm. 35 (2013) 313-315.
DOI: 10.1007/s11096-013-9762-3
Google Scholar
[8]
S. Seang, P. Pavasant, V. Everts, C.N. Limjeerajarus, Prostacyclin Analog Promotes Human Dental Pulp Cell Migration via a Matrix Metalloproteinase 9–related Pathway, J Endod. 45 (2019) 873-881.
DOI: 10.1016/j.joen.2019.03.020
Google Scholar
[9]
B. Chang, N. Ahuja, C. Ma, X. Liu, Injectable scaffolds: Preparation and application in dental and craniofacial regeneration, Mater Sci Eng R Rep. 111(2017), 1-26.
DOI: 10.1016/j.mser.2016.11.001
Google Scholar
[10]
M.A. Ward, T.K. Georgiou, Thermoresponsive polymers for biomedical applications, Polymers. 3 (2011) 1215-1242.
DOI: 10.3390/polym3031215
Google Scholar
[11]
M.K. Sinha, J. Gao, C.E. Stowell, Y. Wang, Synthesis and biocompatibility of a biodegradable and functionalizable thermo-sensitive hydrogel, Regen Biomater. 2 (2015) 177-185.
DOI: 10.1093/rb/rbv009
Google Scholar
[12]
A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf B Biointerfaces. 75 (2010) 1-18.
DOI: 10.1016/j.colsurfb.2009.09.001
Google Scholar
[13]
M. Bercea, R.N. Darie, L.E. Niţă, S. Morariu, Temperature responsive gels based on Pluronic F127 and poly (vinyl alcohol), Ind. Eng. Chem. Res. 50 (2011) 4199-4206.
DOI: 10.1021/ie1024408
Google Scholar
[14]
B. Jeong, S.W. Kim, Y.H. Bae, Thermosensitive sol–gel reversible hydrogels, Adv Drug Deliv Rev. 64 (2012) 154-162.
DOI: 10.1016/j.addr.2012.09.012
Google Scholar
[15]
J.J. Escobar-Chávez, M. López-Cervantes, A. Naik, Y. Kalia, D. Quintanar-Guerrero, A. Ganem-Quintanar, Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations, J Pharm Pharm Sci. 9 (2006) 339-58.
DOI: 10.18433/j3201z
Google Scholar
[16]
L. Yu, J. Ding, Injectable hydrogels as unique biomedical materials, Chem Soc Rev. 37 (2008) 1473-1481.
DOI: 10.1039/b713009k
Google Scholar
[17]
S. Nair, N.S. Remya, S. Remya, P.D. Nair, A biodegradable in situ injectable hydrogel based on chitosan and oxidized hyaluronic acid for tissue engineering applications, Carbohydr. Polym. 85 (2011) 838-844.
DOI: 10.1016/j.carbpol.2011.04.004
Google Scholar
[18]
S.D. Desai, J. Blanchard, In vitro evaluation of pluronic F127-based controlled-release ocular delivery systems for pilocarpine, J Pharm Sci. 87 (1998) 226-230.
DOI: 10.1021/js970090e
Google Scholar
[19]
E.C. Cardoso, S.R. Scagliusi, G.F. Moraes, L.S. Ono, D.F. Parra, A.B. Lugão, Density crosslink study of gamma irradiated LDPE predicted by gel-fraction, swelling and glass transition temperature characterization, Associacao Brasileira de Energia Nuclear. (2011) ISBN: 978-85-99141-04-5.
Google Scholar
[20]
L. Zhao, X. Li, J. Zhao, S. Ma, X. Ma, D. Fan, Y. Liu, A novel smart injectable hydrogel prepared by microbial transglutaminase and human-like collagen: Its characterization and biocompatibility, Mater Sci Eng C Mater Biol Appl. 68 (2016) 317-326.
DOI: 10.1016/j.msec.2016.05.108
Google Scholar
[21]
Y. Lee, H.J. Chung, S. Yeo, C.H. Ahn, H. Lee, P.B. Messersmith, T.G. Park, Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction, Soft Matter. 6 (2010) 977-983.
DOI: 10.1039/b919944f
Google Scholar
[22]
E. Gioffredi, M. Boffito, S. Calzone, S.M. Giannitelli, A. Rainer, M. Trombetta, V. Chiono, Pluronic F127 hydrogel characterization and biofabrication in cellularized constructs for tissue engineering applications, Procedia CIRP. 49 (2016) 125-132.
DOI: 10.1016/j.procir.2015.11.001
Google Scholar
[23]
I.M. Diniz, C. Chen, X. Xu, S. Ansari, H.H. Zadeh, M.M. Marques, A. Moshaverinia, Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells, J Mater Sci Mater Med. 26 (2015) 153.
DOI: 10.1007/s10856-015-5493-4
Google Scholar
[24]
S. Nie, W.W. Hsiao, W. Pan, Z. Yang, Thermoreversible Pluronic® F127-based hydrogel containing liposomes for the controlled delivery of paclitaxel: in vitro drug release, cell cytotoxicity, and uptake studies, Int J Nanomedicine. 6 (2011) 151.
DOI: 10.2147/ijn.s15057
Google Scholar
[25]
G. Wanka, H. Hoffmann, W. Ulbricht, Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions, Macromolecules. 27 (1994) 4145-4159.
DOI: 10.1021/ma00093a016
Google Scholar
[26]
V. Vijayakumar, K. Subramanian, Diisocyanate mediated polyether modified gelatin drug carrier for controlled release, Saudi Pharm J. 22 (2014) 43-51.
DOI: 10.1016/j.jsps.2013.01.005
Google Scholar
[27]
J.G. Wenzel, K.S. Balaji, K. Koushik, C. Navarre, S.H. Duran, C.H. Rahe, U.B. Kompella, Pluronic® F127 gel formulations of Deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle, J Control Release. 85 (2002) 51-59.
DOI: 10.1016/s0168-3659(02)00271-7
Google Scholar
[28]
C.Y. Yu, P.V. Abbott, Responses of the pulp, periradicular and soft tissues following trauma to the permanent teeth, Aust Dent J. 61 (2016) 39-58.
DOI: 10.1111/adj.12397
Google Scholar
[29]
S. Seang, P. Pavasant, C.N. Limjeerajarus, Iloprost Induces Dental Pulp Angiogenesis in a Growth Factor–free 3-Dimensional Organ Culture System, J Endod. 44 (2018) 759-764.
DOI: 10.1016/j.joen.2018.02.001
Google Scholar