[1]
Shi, M., et al., Effect of annealing processes on the structural and electrical properties of the lead-free thin films of (Ba0.9Ca0.1)(Ti0.9Zr0.1)O-3. Journal of Alloys and Compounds, 2013. 562: pp.116-122.
DOI: 10.1016/j.jallcom.2013.02.054
Google Scholar
[2]
Liu, W. and X. Ren, Large Piezoelectric Effect in Pb-Free Ceramics. Physical Review Letters, 2009. 103(25).
DOI: 10.1103/physrevlett.103.257602
Google Scholar
[3]
Li, W., et al., Piezoelectric and Dielectric Properties of (Ba1−xCax)(Ti0.95Zr0.05)O3 Lead-Free Ceramics. Journal of the American Ceramic Society, 2010. 93(10): pp.2942-2944.
DOI: 10.1111/j.1551-2916.2010.03907.x
Google Scholar
[4]
Li, W., et al., High piezoelectric d33 coefficient in (Ba1 − xCax)(Ti0.98Zr0.02)O3 lead-free ceramics with relative high Curie temperature. Materials Letters, 2010. 64(21): pp.2325-2327.
DOI: 10.1016/j.matlet.2010.07.042
Google Scholar
[5]
Omatete, O.O., M.A. Janney, and S.D. Nunn, Gelcasting: From laboratory development toward industrial production. Journal of the European Ceramic Society, 1997. 17(2): pp.407-413.
DOI: 10.1016/s0955-2219(96)00147-1
Google Scholar
[6]
Olhero, S.M., Garcia-Gancedo, L. Zhang, D., Button , T.W., Alves, F.J., Preparation of ceramic microelectromechanical systems (MEMS) using a gelcasting consolidation technique.
Google Scholar
[7]
Guo, D., et al., Gelcasting based solid freeform fabrication of piezoelectric ceramic objects. Scripta Materialia, 2002. 47(6): pp.383-387.
DOI: 10.1016/s1359-6462(02)00132-x
Google Scholar
[8]
Janney, M., et al., Gelcasting. The handbook of ceramic engineering, 1998: pp.1-15.
Google Scholar
[9]
Janney, M.A., et al., Development of low‐toxicity gelcasting systems. Journal of the American Ceramic Society, 1998. 81(3): pp.581-591.
Google Scholar
[10]
Mao, X., Shimai, S., Dong, M., Wang, S., & Jin, L., Investigation of New Epoxy Resins for the Gel Casting of Ceramics. Journal of the American Ceramic Society, 2008. 91(4): pp.1354-1356.
DOI: 10.1111/j.1551-2916.2008.02278.x
Google Scholar
[11]
Guo, D., et al., Application of gelcasting to the fabrication of piezoelectric ceramic parts. Journal of the European Ceramic Society, 2003. 23(7): pp.1131-1137.
DOI: 10.1016/s0955-2219(02)00279-0
Google Scholar
[12]
Guo, D., et al., Gelcasting of PZT. Ceramics International, 2003. 29(4): pp.403-406.
Google Scholar
[13]
Ewais, E.M.M. and A. Safari, Gelation of water-based PZT slurries in the presence of ammonium polyacrylate using agarose. Journal of the European Ceramic Society, 2010. 30(16): pp.3425-3434.
DOI: 10.1016/j.jeurceramsoc.2010.07.025
Google Scholar
[14]
Jiang, C., et al., Gelcasting of aluminum nitride ceramics using hydantion epoxy resin as gelling agent. Ceramics International, 2013. 39(8): pp.9429-9433.
DOI: 10.1016/j.ceramint.2013.05.060
Google Scholar
[15]
Wonisch, A., et al., A Comprehensive Simulation Scheme for Tape Casting: From Flow Behavior to Anisotropy Development. Journal of the American Ceramic Society, 2011. 94(7): pp.2053-2060.
DOI: 10.1111/j.1551-2916.2010.04358.x
Google Scholar
[16]
Rui Xie, K.Z., Xueping Gan, Dou Zhang, Effects of Epoxy Resin on Gelcasting Process and Mechanical Properties of Alumina Ceramics. Journal of the American Ceramic Society, 2013. 96(4): pp.1107-1112.
DOI: 10.1111/jace.12256
Google Scholar
[17]
Xie, R., et al., Fabrication of Fine-Scale 1–3 Piezoelectric Arrays by Aqueous Gelcasting. Journal of the American Ceramic Society, 2014: p. n/a-n/a.
Google Scholar
[18]
Jiang, Y., Fabrication and characterisation of novel ultrasound transducers, in School of Metallurgy and Materials. 2013, University of Birmingham.
Google Scholar
[19]
Xie, R., et al., Gelcasting of alumina ceramics with improved green strength. Ceramics International, 2012. 38(8): pp.6923-6926.
DOI: 10.1016/j.ceramint.2012.05.027
Google Scholar
[20]
Olhero, S.M., et al., Innovative fabrication of PZT pillar arrays by a colloidal approach, in Journal of the European Ceramic Society 2012. pp.1067-1075.
DOI: 10.1016/j.jeurceramsoc.2011.11.016
Google Scholar
[21]
Tsai, D.-S., Pressure buildup and internal stresses during binder burnout: Numerical analysis. AIChE Journal, 1991. 37(4): pp.547-554.
DOI: 10.1002/aic.690370408
Google Scholar
[22]
Bai, Y., Vibrational energy harvesting using piezoelectric ceramics and free-standing thick-film structures. 2015, University of Birmingham.
Google Scholar
[23]
Wu, J., et al., Sintering temperature-induced electrical properties of (Ba0.90Ca0.10)(Ti0.85Zr0.15)O3 lead-free ceramics. Materials Research Bulletin, 2012. 47(5): pp.1281-1284.
DOI: 10.1016/j.materresbull.2012.01.032
Google Scholar
[24]
Huan, Y., et al., Grain Size Effects on Piezoelectric Properties and Domain Structure of BaTiO3 Ceramics Prepared by Two‐Step Sintering. Journal of the American Ceramic Society, 2013. 96(11): pp.3369-3371.
DOI: 10.1111/jace.12601
Google Scholar