[1]
V. Patomchaiviwat, S. Piriyaprasarth, B. Chaisomboonphan, C. Limpoemwuttiporn, P. Nuamnoi, Modification of starch extracted from black glutinous rice (Oryza sativa L, Variety Leum Pua) as tablet filler, Adv. Mater. Res. 1060 (2015) 58-61.
DOI: 10.4028/www.scientific.net/amr.1060.58
Google Scholar
[2]
V. Patomchaiviwat, S. Piriyaprasarth, P. Koorattanasiri, S. Kanoknirumdom, A. Rattanasiha, Evaluation of native and pregelatinized arrowroot (Maranta arundinacea) starches as disintegrant in tablet formulation, Adv. Mater. Res. 197-198 (2011) 127-130.
DOI: 10.4028/www.scientific.net/amr.197-198.127
Google Scholar
[3]
S. Piriyaprasarth, V. Patomchaiviwat, P. Sriamornsak, N. Seangpongchawal, P. Ketwongsa, P. Akeuru, P. Srijarreon and P. Suttiphratya. Evaluation of yam (Dioscorea sp.) starch and arrowroot (Maranta arundinacea) starch as suspending agent in suspension, Adv. Mater. Res. 93-94 (2010) 362-365.
DOI: 10.4028/www.scientific.net/amr.93-94.362
Google Scholar
[4]
S. Latt, K. Boontara, T. Teeraprasatkul, W. Yangngam, V. Patomchaiviwat, P. Sriamornsak, S. Piriyaprasarth, Preparation and physical properties of itraconazole-loaded nanoemulsions using pineapple starch as co-emulsifier, Asian J. Pharm. Sci. 11 (2016) 110-111.
DOI: 10.1016/j.ajps.2015.11.102
Google Scholar
[5]
N. Charoenthai, T. Sanga-ngam, S. Puttipipatkhachorn, Use of modified tapioca starches as pharmaceutical excipients, Pharm. Sci. Asia 45 (2018) 195-204.
DOI: 10.29090/psa.2018.04.018.0048
Google Scholar
[6]
Z. Fu, L. Zhang, M.H. Ren, J.N. BeMiller, Development of hydroxypropylation starch: A review, Starch 71(2019) 1800167.
DOI: 10.1002/star.201800167
Google Scholar
[7]
O.A. Odeku, K.M. Picker-Freyer, Evaluation of the material and tablet formation properties of modified forms of Dioscorea starches, Drug Dev. Ind. Pharm. 35(2009) 389 - 406.
DOI: 10.3109/03639040902960185
Google Scholar
[8]
M. Casas, C. Ferrero, M.V. de Paz, M.R. Jiménez-Castellanos, Synthesis and characterization of new copolymers of ethyl methacrylate grafted on tapioca starch as novel excipients for direct compression matrix tablets, Eur. Polym. J. 45 (2009) 1765-1776.
DOI: 10.1016/j.eurpolymj.2009.02.019
Google Scholar
[9]
M. Casas, C. Ferrero, M.R. Jimenez-Castellanos, Graft tapioca starch copolymers as novel excipients for controlled-release matrix tablets, Carbohydr. Polym. 80 (2010) 71-77.
DOI: 10.1016/j.carbpol.2009.10.065
Google Scholar
[10]
M. Casas, O.L. Strusi, M.R. Jiménez-Castellanos, P. Colombo, Tapioca starch graft opolymers and Dome Matrix® modules assembling technology. I. Effect of module shape on drug release, Eur. J. Pharm. Biopharm. 75(2010) 42-47.
DOI: 10.1016/j.ejpb.2010.01.004
Google Scholar
[11]
M. Casas, O.L. Strusi, M.R. Jiménez-Castellanos, P. Colombo, Tapioca starch graft copolymers and Dome Matrix® modules II, Effect of modules assemblage on Riboflavin release kinetics, Eur. J. Pharm. Biopharm.77 (2011) 111-115.
DOI: 10.1016/j.ejpb.2010.10.006
Google Scholar
[12]
P. Wongsanansin, Modification of tapioca starch by hydroxypropyl substitution, crosslinking with phosphate and pregelatinization for use as a matrix for sustained release dosage forms, Bangkok: Chulalongkorn University, (2011).
Google Scholar
[13]
T. Tehkhunmag, N. Kittipongpatana, S. Malisuwan, S. Watanageebudtra, O.S. Kittipongpatana, Preparation, physicochemical and film-forming properties of carboxymethyl/hydroxypropyl dual-modified tapioca starches, CMU. J. Nat. Sci.7 (2008) 219-230.
DOI: 10.3390/polym14071298
Google Scholar
[14]
E. Anwar, H. Khotimah, A. Yanuar, An approach on pregelatinized cassava starch phosphate esters as hydrophilic polymer excipient for controlled release table, J. Med. Sci. (Pakistan) 6 (2006) 923-929.
DOI: 10.3923/jms.2006.923.929
Google Scholar
[15]
J. Peerapattana, P. Phuvarit, V. Srijesdaruk, D. Preechagoon, A. Tattawasart, A Pregelatinized glutinous rice starch as a sustained release agent for tablet preparations, Carbohydr. Polym. 80 (2010) 453–459.
DOI: 10.1016/j.carbpol.2009.12.006
Google Scholar