Physicochemical and Mechanical Properties of Rice Bran Protein Hydrolysate-Loaded Films

Article Preview

Abstract:

The objective of this study was to apply rice bran protein hydrolysates (RBH) as bioactive additives of gelatin/Eudragit® NE 30D film and characterize the physicochemical and mechanical properties of its. The RBH was obtained by extraction with 2% sodium chloride (RBH-NaCl) and 0.1 N sodium hydroxide (RBH-NaOH) followed by digestion with Alcalase®. Then, RBH was incorporated in gelatin/Eudragit® NE 30D film. Effect of RBHs on film thickness, moisture content, pH, Young's modulus, tensile strength and the elongation at break were investigated. The RBH-NaCl enriched film showed non-homogeneous mixture and reduced moisture content, tensile strength and the elongation at break (1.8 – 2 folds). However, the RBH-NaOH enriched film exhibited a few non-homogeneous mixture and the Young's modulus was slightly decreased. The pH value was increased in the range of 6.77 – 6.88. Our results provide insight for the potential to develop RBH containing films as topical products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.S. Boateng, K.H. Matthews, H.N.E. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: a review. J. Pharm Sci. 97 (2008) 2892–923.

DOI: 10.1002/jps.21210

Google Scholar

[2] R. Garcia-Garcia, A. Lopez-Malo, E. Palou, Bactericidal action of binary and ternary mixtures of carvacrol, thymol, and eugenol against Listeria innocua. J. Food Sci. 76 (2011) M95–100.

DOI: 10.1111/j.1750-3841.2010.02005.x

Google Scholar

[3] M. Thomazine, R.A. Carvalho, P.J. Sobral, Physical properties of gelatin films plasticized by blends of glycerol and sorbitol. J. Food Sci. 70(3) (2005) E172-E176.

DOI: 10.1111/j.1365-2621.2005.tb07132.x

Google Scholar

[4] Q.P. Zhong, W.S. Xia, Physicochemical properties of edible and preservative films from chitosan/cassava starch/gelatin blend plasticized with glycerol. Food Technol. Biotech. 46(3) (2008) 262-269.

Google Scholar

[5] M. Tanaka, K. Iwata, R. Sanguandeekul, A Handa, S. Ishizaki, Influence of plasticizers on the properties of edible films prepared from fish water-soluble proteins. Fish. Sci. 67(2) (2001) 346-351.

DOI: 10.1046/j.1444-2906.2001.00237.x

Google Scholar

[6] N.B. Shaw, F.J. Monahan, E.D. O'riordan, M. O'sullivan, Physical properties of WPI films plasticized with glycerol, xylitol, or sorbitol. J. Food Sci. 67(1) (2002) 164-167.

DOI: 10.1111/j.1365-2621.2002.tb11377.x

Google Scholar

[7] D. J. Lunter, R. Daniels, New film forming emulsions containing Eudragit® NE and/or RS 30D for sustained dermal delivery of nonivamide. Eur. J. Pharm. Biopharm. 82(2) (2012) 291-298.

DOI: 10.1016/j.ejpb.2012.06.010

Google Scholar

[8] C. Fabian, Y.H. Ju, A review on rice bran protein: its properties and extraction methods. Crit. Rev. Food Sci. Nutr. 51(9) (2011) 816-827.

DOI: 10.1080/10408398.2010.482678

Google Scholar

[9] C. Wang, F. Xu, D. Li, M. Zhang, Physico-chemical and structural properties of four rice bran protein fractions based on the multiple solvent extraction method. Czech J. Food Sci. 33(3) (2016) 283-291.

DOI: 10.17221/462/2014-cjfs

Google Scholar

[10] L. Wattanasiritham, C. Theerakulkait, S. Wickramasekara, C.S. Maier, J.F. Stevens, Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein. Food Chem. 192 (2016) 156-162.

DOI: 10.1016/j.foodchem.2015.06.057

Google Scholar

[11] T. Saisavoey, P. Sangtanoo, O. Reamtong, A. Karnchanatat, Antioxidant and anti-Inflammatory effects of defatted rice bran (Oryza Sativa L.) protein hydrolysates on Raw 264.7 macrophage cells. J. Food Biochem. 40(6) (2016) 731-740.

DOI: 10.1111/jfbc.12266

Google Scholar

[12] S. Kubglomsong, C. Theerakulkait, R.L. Reed, L. Yang, C.S. Maier, J.F. Stevens, Isolation and identification of tyrosinase-inhibitory and copper-chelating peptides from hydrolyzed rice-bran-derived albumin. J. Agric. Food Chem. 66(31) (2018) 8346-8354.

DOI: 10.1021/acs.jafc.8b01849

Google Scholar

[13] C. Uraipong, J. Zhao, Rice bran protein hydrolysates exhibit strong in vitro a-amylase, b-glucosidase and ACE-inhibition activities. J. Sci. Food Agric. 96(4) (2016) 1101-1110.

DOI: 10.1002/jsfa.7182

Google Scholar

[14] C. Uraipong, J. Zhao, In vitro digestion of rice bran proteins produces peptides with potent inhibitory effects on a-glucosidase and angiotensin I converting enzyme. J. Sci Food Agric. 98(2) (2018) 758-766.

DOI: 10.1002/jsfa.8523

Google Scholar

[15] M. Taniguchi, K. Saito, R. Aida, A. Ochiai, E. Saitoh, T. Tanaka, Wound healing activity and mechanism of action of antimicrobial and lipopolysaccharide-neutralizing peptides from enzymatic hydrolysates of rice bran proteins. J. Biosci. Bioeng. 128(2) (2019) 142-148.

DOI: 10.1016/j.jbiosc.2019.02.002

Google Scholar

[16] P. Thamnarathip, K. Jangchud, A. Jangchud, S. Nitisinprasert, S. Tadakittisarn, B. Vardhanabhuti, Extraction and characterisation of riceberry bran protein hydrolysate using enzymatic hydrolysis. Int. J. Food Sci. Technol. 51(1) (2016) 194-202.

DOI: 10.1111/ijfs.13008

Google Scholar

[17] A. Achouri, J.I. Boye, Thermal processing, salt and high pressure treatment effects on molecular structure and antigenicity of sesame protein isolate. Food Res. Int. 53(1) (2013) 240-251.

DOI: 10.1016/j.foodres.2013.04.016

Google Scholar

[18] L. Jiang, Z. Wang, Y. Li, X. Meng, X. Sui, B. Qi, L. Zhou, Relationship between surface hydrophobicity and structure of soy protein isolate subjected to different ionic strength. Int. J. Food Prop. 18(5) (2015) 1059-1074.

DOI: 10.1080/10942912.2013.865057

Google Scholar

[19] R.C. Rowe, P.J. Sheskey, M.E. Quinn, Handbook of pharmaceutical excipients, Sixth ed., London, (2009).

Google Scholar

[20] S.L. Percival, S. McCarty, J.A. Hunt, E. J. Woods, The effects of pH on wound healing, biofilms, and antimicrobial efficacy. Wound Repair Regen. 22(2) (2014) 174-186.

DOI: 10.1111/wrr.12125

Google Scholar

[21] S. Karki, H. Kim, S.J. Na, D. Shin, K. Jo, J. Lee, Thin films as an emerging platform for drug delivery. Asian J. Pharm Sci.11 (2016) 559–574.

DOI: 10.1016/j.ajps.2016.05.004

Google Scholar

[22] T.J. Herald, E. Obuz, W.W. Twombly, K.D. Rausch, Tensile properties of extruded corn protein low-density polyethylene films. Cereal Chem. 79(2) (2002) 261-264.

DOI: 10.1094/cchem.2002.79.2.261

Google Scholar

[23] S.S.N. Chakravartula, M. Soccio, N. Lotti, F. Balestra, M. Dalla Rosa, V. Siracusa, Characterization of composite edible films based on pectin/alginate/whey protein concentrate. Materials 12(15) (2019) 2454.

DOI: 10.3390/ma12152454

Google Scholar

[24] B. Giménez, J. Gómez-Estaca, A. Alemán, M.C. Gómez-Guillén, M.P. Montero, Improvement of the antioxidant properties of squid skin gelatin films by the addition of hydrolysates from squid gelatin. Food hydrocoll. 23(5) (2009) 1322-1327.

DOI: 10.1016/j.foodhyd.2008.09.010

Google Scholar