[1]
D. H. Ngo, S. K. Kim, Antioxidant effects of chitin, chitosan, and their derivatives, Adv Food Nutr Res, 73 (2014)15-31.
Google Scholar
[2]
S. Naskar, K. Koutsu, S. Sharma, Chitosan-based nanoparticles as drug delivery systems: A review on two decades of research, J Drug Target, 17 (2019) 379-393.
DOI: 10.1080/1061186x.2018.1512112
Google Scholar
[3]
M. Fathi, S. Majidi, P. S. Zangabad, J. Barar, Erfan-Niya H, Omidi Y, Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer, Med Res Rev. 38 (2018) 2110-2136.
DOI: 10.1002/med.21506
Google Scholar
[4]
W. Sajomsang, P. Gonil, S. Saesoo, U. R. Ruktanonchai, W. Srinuanchai, S. Puttipipatkhachorn, Synthesis and anticervical cancer activity of novel pH responsive micelles for oral curcumin delivery, Int J Pharm, 477 (2014) 261-272.
DOI: 10.1016/j.ijpharm.2014.10.042
Google Scholar
[5]
P. Tonglairoum, T. Woraphatphadung, T. Ngawhirunpat, T. Rojanarata, P. Akkaramongkolporn, W. Sajomsang, et al., Development and evaluation of N-naphthyl-N,O-succinyl chitosan micelles containing clotrimazole for oral candidiasis treatment, Pharm Dev Technol, 22 (2017) 184-190.
DOI: 10.3109/10837450.2016.1163391
Google Scholar
[6]
T. Woraphatphadung, W. Sajomsang, P. Gonil, A. Treetong, P. Akkaramongkolporn, T. Ngawhirunpat, et al., pH-Responsive polymeric micelles based on amphiphilic chitosan derivatives: Effect of hydrophobic cores on oral meloxicam delivery, Int J Pharm, 497 (2016) 150-160.
DOI: 10.1016/j.ijpharm.2015.12.009
Google Scholar
[7]
S. Soodvilai, W. Tipparos, W. Rangsimawong, P. Patrojanasophon, S. Soodvilai, W. Sajomsang, P. Opanasopit, Effects of silymarin-loaded amphiphilic chitosan polymeric micelles on the renal toxicity and anticancer activity of cisplatin, Pharm Dev Technol, 24 (2019) 927-934.
DOI: 10.1080/10837450.2018.1556690
Google Scholar
[8]
S. H. Wright, W. H. Dantzler, Molecular and cellular physiology of renal organic cation and anion transport, Physiol Rev, 84 (2004) 987-1049.
DOI: 10.1152/physrev.00040.2003
Google Scholar
[9]
H. Koepsell, K. Lips, C. Volk, Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications, Pharm Res, 24 (2007)1227-1251.
DOI: 10.1007/s11095-007-9254-z
Google Scholar
[10]
S. H. Wright, Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics, Toxicol Appl Pharmacol, 204 (2005) 309-319.
DOI: 10.1016/j.taap.2004.10.021
Google Scholar
[11]
W. M. Barendt, S. H. Wright. The human organic cation transporter (hOCT2) recognizes the degree of substrate ionization. J Biol Chem, 277 (2002) 22491-22496.
DOI: 10.1074/jbc.m203114200
Google Scholar
[12]
G. Ciarimboli, D. Deuster, A. Knief, M. Sperling, M. Holtkamp, Edemir B, et al., Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions, Am J Pathol, 176 (2010) 1169-1180.
DOI: 10.2353/ajpath.2010.090610
Google Scholar
[13]
N. Kimura, M. Okuda, K. Inui, Metformin transport by renal basolateral organic cation transporter hOCT2, Pharm Res, 22 (2005) 255-259.
DOI: 10.1007/s11095-004-1193-3
Google Scholar
[14]
M. Wieser, G. Stadler, P. Jennings, B. Streubel, W. Pfaller, P. Ambros, et al., hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics, Am J Physiol Renal Physiol, 295 (2008) F1365-75.
DOI: 10.1152/ajprenal.90405.2008
Google Scholar
[15]
L. Aschauer, G. Carta, N. Vogelsang, E. Schlatter, P. Jennings, Expression of xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1, Toxicol In Vitro, 30 (2015); 95-105.
DOI: 10.1016/j.tiv.2014.12.003
Google Scholar
[16]
N. Asavapanumas, S. Kittayaruksakul, P. Meetam, C. Muanprasat, V. Chatsudthipong, S. Soodvilai, Fenofibrate down-regulates renal OCT2-mediated organic cation transport via PPARalpha-independent pathways, Drug Metab Pharmacokinet, 27 (2012) 513-519.
DOI: 10.2133/dmpk.dmpk-11-rg-123
Google Scholar
[17]
S. Soodvilai, A. Chatsudthipong, V. Chatsudthipong, Role of MAPK and PKA in regulation of rbOCT2-mediated renal organic cation transport, Am J Physiol Renal Physiol, 293 (2007) F21-7.
DOI: 10.1152/ajprenal.00043.2007
Google Scholar
[18]
G. Ciarimboli, T. Ludwig, D. Lang, H. Pavenstadt, H. Koepsell, H. J. Piechota, et al., Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2, Am J Pathol, 167 (2005):1477-1484.
DOI: 10.1016/s0002-9440(10)61234-5
Google Scholar
[19]
K. K. Filipski, R. H. Mathijssen, T. S. Mikkelsen, A. H. Schinkel, A. Sparreboom, Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009;86(4):396-402.
DOI: 10.1038/clpt.2009.139
Google Scholar
[20]
S. Harrach, G. Ciarimboli, Role of transporters in the distribution of platinum-based drugs, Front Pharmacol, 6 (2015) 85.
DOI: 10.3389/fphar.2015.00085
Google Scholar
[21]
N. Pabla, Z. Dong, Cisplatin nephrotoxicity: mechanisms and renoprotective strategies, Kidney Int, 73 (2008) 994-1007.
DOI: 10.1038/sj.ki.5002786
Google Scholar
[22]
X. J. Mi, J. G. Hou, Z. Wang, Y. Han, S. Ren, J. N. Hu, C. Chen, W. Li, The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK-mediated PI3K/Akt and p.53 signaling pathways, Sci Rep, 8 (2018) 15922.
DOI: 10.1038/s41598-018-34156-6
Google Scholar