In Vitro and In Vivo Evaluation of Amphiphilic Chitosan Derivatives for Inhibition of Organic Cation Transport Function

Article Preview

Abstract:

This study explored the interaction of amphiphilic chitosan derivatives, N-benzyl-N,O-succinyl chitosan (BSCS), N-naphthyl-N,O-succinyl chitosan (NSCS) and N-octyl-N,O-succinyl chitosan (OSCS), with renal organic cation transporter 2 (OCT2). The influence of amphiphilic chitosan derivatives on renal OCT2 transport function was determined by monitoring the transport of a positively charged substrate into human renal proximal tubular epithelial cells (RPTEC/TERT1 cells), and murine kidney. Amphiphilic chitosan derivatives inhibited 3H-MPP (a substrate of OCT2) transport in the renal cells in a concentration-reliance characteristic. OSCS reduced the accumulation of the cationic drug, cisplatin, in RPTEC/TERT1 cells. This effect was more pronounced than that of other chitosan derivatives. In addition, co-administration of cisplatin and OSCS significantly reduced cisplatin accumulation compared with receiving cisplatin alone. This result was accompanied by the decrease in nephrotoxicity induced by cisplatin. In conclusion, OSCS inhibited OCT2 function and reduced cationic drug disposition in human renal proximal tubular cells and murine kidney.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-50

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. H. Ngo, S. K. Kim, Antioxidant effects of chitin, chitosan, and their derivatives, Adv Food Nutr Res, 73 (2014)15-31.

Google Scholar

[2] S. Naskar, K. Koutsu, S. Sharma, Chitosan-based nanoparticles as drug delivery systems: A review on two decades of research, J Drug Target, 17 (2019) 379-393.

DOI: 10.1080/1061186x.2018.1512112

Google Scholar

[3] M. Fathi, S. Majidi, P. S. Zangabad, J. Barar, Erfan-Niya H, Omidi Y, Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer, Med Res Rev. 38 (2018) 2110-2136.

DOI: 10.1002/med.21506

Google Scholar

[4] W. Sajomsang, P. Gonil, S. Saesoo, U. R. Ruktanonchai, W. Srinuanchai, S. Puttipipatkhachorn, Synthesis and anticervical cancer activity of novel pH responsive micelles for oral curcumin delivery, Int J Pharm, 477 (2014) 261-272.

DOI: 10.1016/j.ijpharm.2014.10.042

Google Scholar

[5] P. Tonglairoum, T. Woraphatphadung, T. Ngawhirunpat, T. Rojanarata, P. Akkaramongkolporn, W. Sajomsang, et al., Development and evaluation of N-naphthyl-N,O-succinyl chitosan micelles containing clotrimazole for oral candidiasis treatment, Pharm Dev Technol, 22 (2017) 184-190.

DOI: 10.3109/10837450.2016.1163391

Google Scholar

[6] T. Woraphatphadung, W. Sajomsang, P. Gonil, A. Treetong, P. Akkaramongkolporn, T. Ngawhirunpat, et al., pH-Responsive polymeric micelles based on amphiphilic chitosan derivatives: Effect of hydrophobic cores on oral meloxicam delivery, Int J Pharm, 497 (2016) 150-160.

DOI: 10.1016/j.ijpharm.2015.12.009

Google Scholar

[7] S. Soodvilai, W. Tipparos, W. Rangsimawong, P. Patrojanasophon, S. Soodvilai, W. Sajomsang, P. Opanasopit, Effects of silymarin-loaded amphiphilic chitosan polymeric micelles on the renal toxicity and anticancer activity of cisplatin, Pharm Dev Technol, 24 (2019) 927-934.

DOI: 10.1080/10837450.2018.1556690

Google Scholar

[8] S. H. Wright, W. H. Dantzler, Molecular and cellular physiology of renal organic cation and anion transport, Physiol Rev, 84 (2004) 987-1049.

DOI: 10.1152/physrev.00040.2003

Google Scholar

[9] H. Koepsell, K. Lips, C. Volk, Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications, Pharm Res, 24 (2007)1227-1251.

DOI: 10.1007/s11095-007-9254-z

Google Scholar

[10] S. H. Wright, Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics, Toxicol Appl Pharmacol, 204 (2005) 309-319.

DOI: 10.1016/j.taap.2004.10.021

Google Scholar

[11] W. M. Barendt, S. H. Wright. The human organic cation transporter (hOCT2) recognizes the degree of substrate ionization. J Biol Chem, 277 (2002) 22491-22496.

DOI: 10.1074/jbc.m203114200

Google Scholar

[12] G. Ciarimboli, D. Deuster, A. Knief, M. Sperling, M. Holtkamp, Edemir B, et al., Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions, Am J Pathol, 176 (2010) 1169-1180.

DOI: 10.2353/ajpath.2010.090610

Google Scholar

[13] N. Kimura, M. Okuda, K. Inui, Metformin transport by renal basolateral organic cation transporter hOCT2, Pharm Res, 22 (2005) 255-259.

DOI: 10.1007/s11095-004-1193-3

Google Scholar

[14] M. Wieser, G. Stadler, P. Jennings, B. Streubel, W. Pfaller, P. Ambros, et al., hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics, Am J Physiol Renal Physiol, 295 (2008) F1365-75.

DOI: 10.1152/ajprenal.90405.2008

Google Scholar

[15] L. Aschauer, G. Carta, N. Vogelsang, E. Schlatter, P. Jennings, Expression of xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1, Toxicol In Vitro, 30 (2015); 95-105.

DOI: 10.1016/j.tiv.2014.12.003

Google Scholar

[16] N. Asavapanumas, S. Kittayaruksakul, P. Meetam, C. Muanprasat, V. Chatsudthipong, S. Soodvilai, Fenofibrate down-regulates renal OCT2-mediated organic cation transport via PPARalpha-independent pathways, Drug Metab Pharmacokinet, 27 (2012) 513-519.

DOI: 10.2133/dmpk.dmpk-11-rg-123

Google Scholar

[17] S. Soodvilai, A. Chatsudthipong, V. Chatsudthipong, Role of MAPK and PKA in regulation of rbOCT2-mediated renal organic cation transport, Am J Physiol Renal Physiol, 293 (2007) F21-7.

DOI: 10.1152/ajprenal.00043.2007

Google Scholar

[18] G. Ciarimboli, T. Ludwig, D. Lang, H. Pavenstadt, H. Koepsell, H. J. Piechota, et al., Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2, Am J Pathol, 167 (2005):1477-1484.

DOI: 10.1016/s0002-9440(10)61234-5

Google Scholar

[19] K. K. Filipski, R. H. Mathijssen, T. S. Mikkelsen, A. H. Schinkel, A. Sparreboom, Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther. 2009;86(4):396-402.

DOI: 10.1038/clpt.2009.139

Google Scholar

[20] S. Harrach, G. Ciarimboli, Role of transporters in the distribution of platinum-based drugs, Front Pharmacol, 6 (2015) 85.

DOI: 10.3389/fphar.2015.00085

Google Scholar

[21] N. Pabla, Z. Dong, Cisplatin nephrotoxicity: mechanisms and renoprotective strategies, Kidney Int, 73 (2008) 994-1007.

DOI: 10.1038/sj.ki.5002786

Google Scholar

[22] X. J. Mi, J. G. Hou, Z. Wang, Y. Han, S. Ren, J. N. Hu, C. Chen, W. Li, The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK-mediated PI3K/Akt and p.53 signaling pathways, Sci Rep, 8 (2018) 15922.

DOI: 10.1038/s41598-018-34156-6

Google Scholar