[1]
B.W. Barry, Novel mechanisms and devices to enable successful transdermal drug delivery, Eur J Pharm Sci. 14 (2001) 101-114.
DOI: 10.1016/s0928-0987(01)00167-1
Google Scholar
[2]
C. Valenta and B.G. Auner, The use of polymers for dermal and transdermal delivery, Eur J Pharm Biopharm. 58 (2004) 279-289.
Google Scholar
[3]
Y.W. Chien, Logics of transdermal controlled drug administration, Drug Dev Ind Pharm. 9 (1983) 497-520.
Google Scholar
[4]
G.W. Cleary, Transdermal drug delivery systems. In: A.A. Tracton, (editor). Coatings Materials and Surface Coatings, Florida, CRC Press; 2006, p.64(61-65).
DOI: 10.1201/9781420044058.ch64
Google Scholar
[5]
W. Pichayakorn, J. Suksaeree, P. Boonme, W. Taweepreda, and G.C. Ritthidej, Preparation of deproteinized natural rubber latex and properties of films formed by itself and several adhesive polymer blends, Ind Eng Chem Res. 51 (2012) 13393-13404.
DOI: 10.1021/ie301985y
Google Scholar
[6]
K. Sanguansap, R. Thonggoom, and P. Tangboriboonrat, Surface modification of natural rubber film by polymerisation of methyl methacrylate in water-based system, Eur Polym J. 42 (2006) 2334-2342.
DOI: 10.1016/j.eurpolymj.2006.06.011
Google Scholar
[7]
D. Derouet, P. Intharapat, Q.N. Tran, F. Gohier, and C. Nakason, Graft copolymers of natural rubber and poly(dimethyl(acryloyloxymethyl)phosphonate) (NR-g-PDMAMP) or poly(dimethyl(methacryloyloxyethyl)phosphonate) (NR-g-PDMMEP) from photopolymerization in latex medium, Eur Polym J. 45 (2009) 820-836.
DOI: 10.1016/j.eurpolymj.2008.11.044
Google Scholar
[8]
W. Pichayakorn, J. Suksaeree, P. Boonme, T. Amnuaikit, W. Taweepreda, and G.C. Ritthidej, Deproteinized natural rubber latex/hydroxypropylmethyl cellulose blending polymers for nicotine matrix films, Ind Eng Chem Res. 51 (2012) 8442-8452.
DOI: 10.1021/ie300608j
Google Scholar
[9]
W. Pichayakorn, J. Suksaeree, P. Boonme, T. Amnuaikit, W. Taweepreda, and G.C. Ritthidej, Nicotine transdermal patches using polymeric natural rubber as the matrix controlling system: Effect of polymer and plasticizer blends, J Membr Sci. 411-412 (2012) 81-90.
DOI: 10.1016/j.memsci.2012.04.017
Google Scholar
[10]
J. Suksaeree, L. Charoenchai, C. Monton, T. Chusut, A. Sakunpak, W. Pichayakorn, and P. Boonme, Preparation of a pseudolatex-membrane for ketoprofen transdermal drug delivery systems, Ind Eng Chem Res. 52 (2013) 15847-15854.
DOI: 10.1021/ie402345a
Google Scholar
[11]
R. Waiprib, P. Boonme, W. Taweepreda, E. Kalkornsurapranee, J. Suksaeree, and W. Pichayakorn, Deproteinized natural rubber latex/gelatinized starch blended films as drug delivery carrier, Monatsh Chem Chem Mon. 148 (2017) 1223-1228.
DOI: 10.1007/s00706-017-2005-x
Google Scholar
[12]
H. Dias Murbach, G. Jaques Ogawa, F. Azevedo Borges, M.C. Romeiro Miranda, R. Lopes, N. Roberto de Barros, A.V. Guedes Mazalli, R. Gonçalves da Silva, J.L. Ferreira Cinman, B. de Camargo Drago, and R. Donizetti Herculano, Ciprofloxacin release using natural rubber latex membranes as carrier, Int J Biomat. 2014 (2014) 1-7.
DOI: 10.1155/2014/157952
Google Scholar
[13]
M. Guyot and F. Fawaz, Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol, Int J Pharm. 204 (2000) 171-182.
DOI: 10.1016/s0378-5173(00)00494-4
Google Scholar
[14]
P. Costa and J.M.S. Lobo, Modeling and comparison of dissolution profiles, Eur J Pharm Sci. 13 (2001) 123-133.
Google Scholar
[15]
Organization for Economic Co-operation and Development (OECD), OECD Guidelines for Testing of Chemicals, Section 4: Health Effects, Test No. 404: Acute Dermal Irritation/Corrosion. Paris Cedex 162002.
DOI: 10.1787/9789264242678-en
Google Scholar
[16]
J.H. Draize, G. Woodard, and H.O. Calvery, Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes, J Pharm Exp Therap. 82 (1944) 377-390.
Google Scholar