[1]
M. Lekka, Electrochemical deposition of composite coatings, in: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Springer, 2018, pp.54-67.
Google Scholar
[2]
Z. Hui, W. X.-Hui, L. Q.-Lei, C. L-Jia, L. Zheng, Structure and wear resistance of TiN and TiAlN coatings on AZ91 alloy deposited by multi-arc ion plating, Trans. Nonferrous Met. Soc. China 20 (2010) 679-682.
DOI: 10.1016/s1003-6326(10)60561-4
Google Scholar
[3]
B. Li, W. Zhang, Microstructural, surface and electrochemical properties of pulse electrodeposited Ni–W/Si3N4 nanocomposite coating, Cer. Int. 44 (2018) 19907-19918.
DOI: 10.1016/j.ceramint.2018.07.254
Google Scholar
[4]
A.C. Lee, H.-H. Lu, H.-T. Lin, P. Sajgalik, D.-F. Lii, P.K, Nayak, C.-Y. Chen, J.-L. Huang, Nanopowder processing of ultrafine Si3N4 with improved wear resistance, J. Asian Cer. Soc. 3 (2015) 6-12.
Google Scholar
[5]
S. Veprek, M.G.J. Veprek-Heijman, The formation and role of interfaces in superhard nc-MeN/a-Si3N4 nanocomposites, Surf. Coat. Technol. 201 (2007) 6064–6070.
DOI: 10.1016/j.surfcoat.2006.08.112
Google Scholar
[6]
N. Aboudzadeh, C. Dehghanian, M.A. Shokrgozar, Effect of electrodeposition parameters and substrate on morphology of Si-HA coating, Surf. Coat. Technol. 375 (2019) 341–351.
DOI: 10.1016/j.surfcoat.2019.07.016
Google Scholar
[7]
Q. Ma, L. Li, Y. Xu, X. Ma, Y. Xu, H. Liu, Effect of Ti content on the microstructure and mechanical properties of TiAlSiN nanocomposite coatings, Int. J. Refrac. Met. Hard Mater. 59 (2016) 114–120.
DOI: 10.1016/j.ijrmhm.2016.06.005
Google Scholar
[8]
F.-F. Xia, M.-H. Wu, F. Wang, Z.-Y. Jia, A.-L. Wang, Nanocomposite Ni–TiN coatings prepared by ultrasonic electrodeposition, Curr. App. Phys. 9 (2009) 44–47.
DOI: 10.1016/j.cap.2007.11.014
Google Scholar
[9]
N.S. Qu, D. Zhu, K.C. Chan, Fabrication of Ni–CeO2 nanocomposite by electrodeposition, Scr. Mater. 54 (2006) 1421–1425.
DOI: 10.1016/j.scriptamat.2005.10.069
Google Scholar
[10]
E. Budi, N. Fathia, W. Indrasari, I. Sugihartono, Structure and Mechanical Properties of Elecrodeposited Ni-AlN/Si3N4 Composite Coating, J. Phys.: Conf. Ser. 1317 (2019) 012050.
DOI: 10.1088/1742-6596/1317/1/012050
Google Scholar
[11]
R. Hessam, P. Najafisayar The effects of applied current density, bath concentration and temperature on the morphology, crystal structure and photoelectrochemical properties of electrodeposited hematite films, Int. J. Hydrog. Energy 44 (2019) 22851-22862.
DOI: 10.1016/j.ijhydene.2019.06.208
Google Scholar
[12]
M. Wu, W. Jia, P. Lv, Electrodepositing Ni-TiN nanocomposite layers with applying action of ultrasonic waves, Proc. Eng. 174 ( 2017 ) 717 – 723.
DOI: 10.1016/j.proeng.2017.01.211
Google Scholar
[13]
F. C. Walsh, C. P. de Leon, A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology, Transactions of the IMF 92 (2014) 82-98.
DOI: 10.1179/0020296713z.000000000161
Google Scholar
[14]
S.M. Mirsaeed-Ghazia, S.R. Allahkaram, A. Molaei, Development and investigation of Cu/SiC nano-composite coatings via various parameters of DC electrodeposition, Tribo. Int. 134 (2019) 221–231.
DOI: 10.1016/j.triboint.2019.01.034
Google Scholar
[15]
L. Shi, C. Sun, P. Gao, F. Zhou, W. Liu, Mechanical properties and wear and corrosion resistance of electrodeposited Ni–Co/SiC nanocomposite coating, App. Surf. Sci. 252 (2006) 3591–3599.
DOI: 10.1016/j.apsusc.2005.05.035
Google Scholar