Study of Low Temperature Preparation of Al Doped ZnO Powder and its Photocatalytic Properties

Article Preview

Abstract:

Aluminum doped ZnO crystal powders have been successfully prepared by sol-gel method with low temperature (150°C) crystallization process. The AlNO3 as material dopant were varied by 0.5 wt% and 1.0 wt% relate to 5 mmol of zinc acetate dihydrate as precursor. Degradation of the methylene blue (MB) was used to evaluate the photocatalytic property. The results showed that all ZnO samples have spherical morphology with hexagonal wurtzite crystal structures. The ZnO powder with 0.5 wt % of aluminum has a better photocatalytic property that related to the optical characteristics. The optimum of Al content (0.5wt%) reduces the crystallite size and give some advantages in optical characteristics that directly relate to the increments in photocatalytic behavior. The photodegradation rate of Al doped ZnO 0.5 wt% is increase almost 100% compared with ZnO undoped. The stability and reusability of 0.5 wt% Al doped ZnO as photocatalyst, is also observed by monitoring the photocatalytic behavior under 14 hours irradiation (in three recycle used)

You might also be interested in these eBooks

Info:

Periodical:

Pages:

329-337

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent development of zinc oxide based photocatalyst in water treatment technology: A review, Water Res 88 (2016) 428-448.

DOI: 10.1016/j.watres.2015.09.045

Google Scholar

[2] C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanism and applications, Renew. Sust. Energ. Rev. 81 (2018) 536-551.

DOI: 10.1016/j.rser.2017.08.020

Google Scholar

[3] S.C. Motshekga, S.S. Ray, M.S. Onyango, M.N.B. Momba, Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection, Appl. Clay Sci. 114 (2015) 330-339.

DOI: 10.1016/j.clay.2015.06.010

Google Scholar

[4] E.A.S. Dimapilis, C-S Hsu, R.M.O. Mendoza, Zinc oxide nanoparticles for water disinfection, Sust. Env. Res. 28 (2018) 47-56.

Google Scholar

[5] A.A. Alswata, M.B. Ahmad, N.M. Al-Hada, H.M. Kamari, M. Zobir, N.A. Ibrahim, Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water, Results Phys. 7 (2017) 723-731.

DOI: 10.1016/j.rinp.2017.01.036

Google Scholar

[6] M.M. Khan, S.F. Adil Abdullah Al-Mayouf, Metal oxides as photocatalyst, J. Saudi Chem. Soc. 19 (2015) 462-464.

DOI: 10.1016/j.jscs.2015.04.003

Google Scholar

[7] A.D. Mauro, M.E. Fragala, V. Privitera, G. Impellizzeri, ZnO for application in photocatalysis: from thin films to nanostructures, Mater. Sci. Semicond. Process 69 (2017) 44-51.

DOI: 10.1016/j.mssp.2017.03.029

Google Scholar

[8] K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloys Compd. 727 (2017) 792-820.

DOI: 10.1016/j.jallcom.2017.08.142

Google Scholar

[9] L. Zhang, H. Cheng, R. Zong, Y. Zhu, Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity, J. Phys. Chem. C 113 (2009) 2368-2374.

DOI: 10.1021/jp807778r

Google Scholar

[10] T.K. Pathak, R.E. Kroon, V. Craciun, M. Popa, M.C. Chifiriuc, H.C. Swart, Influence of Ag, Au and Pd noble metals doping on structural, optical and antimicrobial properties of zinc oxide and titanium dioxide nanomaterials, Heliyon 5 (2019) 1-15.

DOI: 10.1016/j.heliyon.2019.e01333

Google Scholar

[11] L. Li, L. Han, Y. Han, Z. Yang, B. Su, Z. Li, Preparation and enhanced photocatalytic properties of 3D nanoarchitectural ZnO hollow spheres with porous shells, Nanomater. 8 (2018) 687 (11 pages).

DOI: 10.3390/nano8090687

Google Scholar

[12] G. Zolfaghari, A. Esmaili-Sari, M. Anbia, H. Younesi, M.B. Ghasemian, A zinc oxide-coated nanoporous carbon adsorbent for lead removal from water: Optimization, equilibrium modeling, and kinetics studies, Int. J. Environ. Sci. Technol. 10 (2013) 325-340.

DOI: 10.1007/s13762-012-0135-6

Google Scholar

[13] W. Lu, Preparation of a zinc oxide-reduced graphene oxide nanocomposite for the determination of cadmium (II), lead(II), copper(II) and mercury(II) in water, Int. J. Electrochem. Sci. 12 (2017) 5392-5403.

DOI: 10.20964/2017.06.06

Google Scholar

[14] A. Aprilia, P. Wulandari, V. Suendo, Herman, R. Hidayat, A. Fujii, M. Ozaki, Influences of dopant concentration in sol–gel derived AZO layer on the performance of P3HT:PCBM based inverted solar cell, Sol. Energy Mater. Sol. Cells 111 (2013) 181-188.

DOI: 10.1016/j.solmat.2012.12.033

Google Scholar

[15] B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system, Phys. Status Solidi B 252 (2015) 1700-1710.

DOI: 10.1002/pssb.201552007

Google Scholar

[16] Y.G. Habba, M.C. Gnambodoe, Y.L. Wang, Enhanced photocatalytic activity of iron-doped ZnO nanowires for water purification, Appl. Sci. 7 (2017) 1185 (10 pages).

DOI: 10.3390/app7111185

Google Scholar

[17] S. Vempati, M. Joy, P. Davidson, One-step synthesis of ZnO nanosheet: A blue-white fluorophore, Nanoscale Res. Lett. 7 (2012) 470 (10 pages).

DOI: 10.1186/1556-276x-7-470

Google Scholar

[18] K.-M. Kim, M.-H. Choi, J.-K. Lee, J. Jeong, Y.-R. Kim, M.-K. Kim, S.-M. Paek, J.-M. Oh, Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes, Int. J. Nanomedicine 9 (2014) 41-56.

DOI: 10.2147/ijn.s57923

Google Scholar

[19] F. Ajala, A. Hamraouni, A. Houas, H. Lachbeb, B. Megna, L. Palmisano, F. Parrino, The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water, Appl. Surf. Sci. 445 (2018) 376-382.

DOI: 10.1016/j.apsusc.2018.03.141

Google Scholar

[20] V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide, J. Appl. Phys. 83 (1998) 5447-5451.

DOI: 10.1063/1.367375

Google Scholar

[21] C.M. Taylor, A. Ramirez-Canon, J. Wenk, D. Mattia, Enhancing the photo-corrosion resistance of ZnO nanowire photocatalyst, J. Hazard Mater. 378 (2019) 120799.

DOI: 10.1016/j.jhazmat.2019.120799

Google Scholar