Improved the Performance and Stability at High Humidity of Perovskite Solar Cells by Mixed Cesium-Metylammonium Cations

Article Preview

Abstract:

Perovskite solar cells have a great potential as competitor of silicon solar cells which have been dominated the market of solar cells since last decade, due to a tremendous improvement of their power conversion efficiency (PCE). Recently, a PCE of perovskite solar cells above 23% have been obtained. Moreover, perovskite solar cells can be fabricated using simple solution methods, therefore, the whole cost production of solar cells is less than half of silicon solar cells. However, their low stability in thermal and high humidity hinder them to be produced and commercially used to replace silicon solar cells. Many efforts have been done to improve both PCE and stability, including mixed inorganic-organic cations, mixed halide anions, improvement of perovskite morphology or crystallinity and using small molecules for passivation of defect in perovskite. In this paper, we used mixed cesium-methylammonium to improve both PCE and stability of perovskite solar cells. Cesium was used due to its smaller ionic radius than methylammonium (MA) ions, therefore, the crystal structure of perovskite is not distorted. Moreover, perovskite cesium-lead-bromide (CsPbBr3) are more stable than that of MAPbBr3 and doping cesium increased light absorption in perovskite MAPbBr3. We studied the effect of mixed cesium-MA on the PCE and stability at high humidity (>70%). The percentage of cesium was varied at 0%, 5%, 10%, 15% and 20%. The perovskite solar cells have monolithic hole-transport layer free (HTL-free) structure using carbon as electrode. This structure was used due simple and low cost in processing of solar cells. Our results showed that by replacing 10% of MA ions with Cs ions, both PCE and stability at high humidity are improved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.A. Bush, A.F. Palmstrom, Z. Yu, M. Boccard, R. Cheacharoen, J.P. Mailoa, D.P. McMeekin, R.L.Z. Hoye, C.D. Bailie, T. Leijtens, I.M. Peters, M.C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H.J. Snaith, T. Buonassisi, Z.C. Holman, S.F. Bent, M.D. McGehee, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nat. Energy 2 (2017), 17009 (4 pages).

DOI: 10.1038/nenergy.2017.9

Google Scholar

[2] K.A. Bush, S. Manzoor, K. Frohna, Z. J. Yu, J.A. Raiford, A.F. Palmstrom, H.P. Wang, R. Prasanna, Z.C. Holman, M.D. McGehee, Minimizing current and voltage losses to reach 25% efficient monolithic two-terminal perovskite−silicon tandem solar cells, ACS Energy Lett. 3 (2018), 2173−2180.

DOI: 10.1021/acsenergylett.8b01201

Google Scholar

[3] Z. Yang, Z. Yu, H. Wei, X. Xiao, Z. Ni, B. Chen, Y. Deng, S.N. Habisreutinger, X. Chen, K. Wang, J. Zhao, P.N. Rudd, J.J. Berry, M.C. Beard, J. Huang, Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells, Nat. Commun. 10 (2019), 4498 (9 pages).

DOI: 10.1038/s41467-019-12513-x

Google Scholar

[4] Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov, S.I. Seok, M.D. McGehee, E.H. Sargent, H. Han, Challenges for commercializing perovskite solar cells, Science 361 (2018) 1-7.

DOI: 10.1126/science.aat8235

Google Scholar

[5] Q. Fu, X. Tang, B. Huang, T. Hu, L. Tan, L. Chen, Y. Chen, Recent progress on the long-term stability of perovskite solar cells, Adv. Sci. 5 (2018), 1700387 (17 pages).

DOI: 10.1002/advs.201700387

Google Scholar

[6] Z. Wang, Z. Shi, T. Li, Y. Chen, W. Huang, Stability of perovskite solar cells: A prospective on the substitution of the A cation and X anion, Angew. Chem. Int. Ed. 55 (2016), 2-25.

DOI: 10.1002/anie.201603694

Google Scholar

[7] N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Graetzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, Science 358 (2017) 768-771.

DOI: 10.1126/science.aam5655

Google Scholar

[8] J. Lee, D. Kim, H. Kim, S. Seo, S. M. Cho, N. Park, Formamidinium and cesium hybridization for photo‐ and moisture‐stable perovskite solar cell, Adv. Energy Mater. 5 (2015), 1501310 (10 pages).

DOI: 10.1002/aenm.201501310

Google Scholar

[9] A. Binek, F.C. Hanusch, P. Docampo, T. Bein, Stabilization of the trigonal high-temperature phase of formamidinium lead iodide, J. Phys. Chem. Lett. 6 (2015), 1249-1253.

DOI: 10.1021/acs.jpclett.5b00380

Google Scholar

[10] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, Cesium enhances long-term stability of lead bromide perovskite-based solar cells, J. Phys. Chem. Lett. 7 (2016), 167-172.

DOI: 10.1021/acs.jpclett.5b02597

Google Scholar

[11] G. Niu, W. Li, J. Li, X. Liang, L. Wang, Enhancement of thermal stability for perovskite solar cells through cesium doping, RSC Adv.7 (2017), 17473-17479.

DOI: 10.1039/c6ra28501e

Google Scholar

[12] A. Bahtiar, C. Agustin, E.S. Nurazizah, A. Aprilia, D. Hidayat, Characteristics of large area perovskite solar cells from electrodes of used car batteries, Mater. Sci. Forum 966 (2019), 373-377.

DOI: 10.4028/www.scientific.net/msf.966.373

Google Scholar