Inorganic-Organic Hybrid Perovskite Solar Cells Fabricated with Additives

Article Preview

Abstract:

We have studied the effect of lead (II) cyanate Pb (OCN)2 additive on photovoltaic properties of inverted planar solar cells based on inorganic-organic hybrid perovskite CH3NH3PbI3. The active layers of the solar cells were fabricated with a reaction between CH3NH3I and a mixture of PbI2 and Pb (OCN)2. The highest power conversion efficiency was 15%. Hysteresis behaviors in JV curves were reduced. The lifetime of the solar cells was dramatically increased. SEM images indicated that crystallite sizes were enlarged. The OCN groups were not incorporated into crystals from infrared measurements. These results suggest that Pb (OCN)2 affect mainly the crystallization process of CH3NH3PbI3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

August 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on https://www.nrel.gov/pv/cell-efficiency.html.

Google Scholar

[2] Q. Jiang, D. Rebollar, J. Gong, E.L. Piacentino, C. Zheng, T. Xu, Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films, Angew. Chem. Int. Ed. 54 (2015) 7617–7620.

DOI: 10.1002/anie.201503038

Google Scholar

[3] Y. Chen, B. Li, W. Huang, D. Gao, Z. Liang, Efficient and reproducible CH3NH3PbI3−x(SCN)x perovskite based planar solar cells, Chem. Commun. 51 (2015) 11997–11999.

DOI: 10.1039/c5cc03615a

Google Scholar

[4] A. Halder, R. Chulliyil, A.S. Subbiah, T. Khan, S. Chattoraj, A. Chowdhury, S.K. Sarkar, Pseudohalide (SCN−)-doped MAPbI3 perovskites: a few surprises, J. Phys. Chem. Lett. 6 (2015) 3483–3489.

DOI: 10.1021/acs.jpclett.5b01327

Google Scholar

[5] Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H.L.W. Chan, F. Yan, Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity, Nat. Commun. 7 (2016) 11105.

DOI: 10.1038/ncomms11105

Google Scholar

[6] W. Ke, C. Xiao, C. Wang, B. Saparov, H.-S. Duan, D. Zhao, Z. Xiao, P. Schulz, S.P. Harvey, W. Liao, W. Meng, Y. Yu, A.J. Cimaroli, C.-S. Jiang, K. Zhu, M. Al-Jassim, G. Fang, D.B. Mitzi, Y. Yan, Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells, Adv. Mater. 28 (2016) 5214–5221.

DOI: 10.1002/adma.201600594

Google Scholar

[7] M.K. Kim, T. Jeon, H.I. Park, J.M. Lee, S.A. Nam, S.O. Kim, Effective control of crystal grain size in CH3NH3PbI3 perovskite solar cells with a pseudohalide Pb(SCN)2 additive, CrystEngComm. 18 (2016) 6090–6095.

DOI: 10.1039/c6ce00842a

Google Scholar

[8] Y.-H. Chiang, H.-M. Cheng, M.-H. Li, T.-F. Guo, P. Chen, Low-pressure vapor-assisted solution process for thiocyanate-based pseudohalide perovskite solar cells, ChemSusChem. 9 (2016) 2620–2627.

DOI: 10.1002/cssc.201600674

Google Scholar

[9] Y. Sun, J. Peng, Y. Chen, Y. Yao, Z. Liang, Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive, Sci. Report, 7 (2017) 46193.

DOI: 10.1038/srep46193

Google Scholar

[10] Y.-H. Chiang, M.-H. Li, H.-M. Cheng, P.-S. Shen, P. Chen, Mixed cation thiocyanate-based pseudohalide perovskite solar cells with high efficiency and stability, ACS Appl. Mater. Interfaces 9 (2017) 2403–2409.

DOI: 10.1021/acsami.6b13206

Google Scholar

[11] Y. Zou, Z. Zhang, Y. Cai, H. Liu, Q. Qin, Q. Tai, X. Lu, X. Gao, L. Shui, S. Wu, J.-M. Liu, High performance planar perovskite solar cells based on CH3NH3PbI3−x(SCN)x perovskite film and SnO2 electron transport layer prepared in ambient air with 70% humidity, Electrochim. Acta 260 (2018) 468–476.

DOI: 10.1016/j.electacta.2017.12.076

Google Scholar

[12] A. Bahtiar, M. Putri, E.S. Nurazizah, Setianto, T. Saragi, Risdiana, M. Yamashita, S. Ikawa, Y. Furukawa, J-V characteristic of perovskite solar cells using lead(II) thiocyanate doped-methylammonium lead iodide (MAPbI3) as active material, J. Phys.: Conf. Ser. 1080 (2018) 012012.

DOI: 10.1088/1742-6596/1080/1/012012

Google Scholar

[13] Q. Wang, Y. Chen, Y. Zheng, N. Ai, S. Han, W. Xu, Z. Jiang, Y. Meng, D. Hu, J. Peng, J. Wang, Y. Cao, Solvent treatment as an efficient anode modification method to improve device performance of polymer light-emitting diodes, Org. Electron. 14 (2013) 548–553.

DOI: 10.1016/j.orgel.2012.11.025

Google Scholar

[14] H. Liu, X. Li, L. Zhang, Q. Hong, J. Tang, A. Zhang, C.-Q. Ma, Org. Electron. 47 (2017) 220–227.

Google Scholar

[15] D. Zhao, M. Sexton, H.-Y. Park, G. Baure, J.C. Nino, F. So, High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer, Adv. Energy Mater. 5 (2015) 1401855.

DOI: 10.1002/aenm.201401855

Google Scholar

[16] K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Part B, fifth ed., John, Wiley & Sons, New York, 1997, p.121–123.

Google Scholar