[1]
PlasticsEurope, Plastics-the Facts 2018. An Analysis of European Latest Plastics Production, Demand and Waste Data, (2018).
Google Scholar
[2]
B. Liguori, F. Iucolano, I. Capasso, M. Lavorgna, L. Verdolotti, The effect of recycled plastic aggregate on chemico-physical and functional properties of composite mortars, J. Mater. 57 (2014) 578-584.
DOI: 10.1016/j.matdes.2014.01.006
Google Scholar
[3]
N. Singh, D. Hui, R. Singh, I. P. S. Ahuja, L. Feo, F. Fraternali, Recycling of plastic solid waste: a state of art review and future applications, Compos. Part B, 115 (2017) 409-422.
DOI: 10.1016/j.compositesb.2016.09.013
Google Scholar
[4]
R. V. Silva, J. De Brito, R. K. Dhir, Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production, Constr. Build. Mater. 65 (2014) 201-217.
DOI: 10.1016/j.conbuildmat.2014.04.117
Google Scholar
[5]
Y. W. Choi, D. J. Moon, Y. J. Kim, M. Lachemi, Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles, Constr. Build. Mater. 23 (2009) 2829-2835.
DOI: 10.1016/j.conbuildmat.2009.02.036
Google Scholar
[6]
S. Teng, et al. Flexural behavior and durability properties of high performance hybrid fiber-reinforced concrete, Constr. Build. Mater. 182 (2018) 504-515.
DOI: 10.1016/j.conbuildmat.2018.06.158
Google Scholar
[7]
P. Rossi, Influence of fibre geometry and matrix maturity on the mechanical performance of ultra-high-performance cement-based composites, Cem. Conc. Compos. 37 (2013) 246-248.
DOI: 10.1016/j.cemconcomp.2012.08.005
Google Scholar
[8]
A. Passuello, et al. Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers, Cem. Concr. Compos. 31 (2009) 699-704.
DOI: 10.1016/j.cemconcomp.2009.08.004
Google Scholar
[9]
A. Caggiano, et al. Fracture behavior of concrete beams reinforced with mixed long/short steel fibers, Constr. Build. Mater. 37 (2012) 832-840.
DOI: 10.1016/j.conbuildmat.2012.07.060
Google Scholar
[10]
D. Foti, Preliminary analysis of concrete reinforced with waste bottles PET fibers, Constr. Build. Mater. 25 (2011) 1906-1915.
DOI: 10.1016/j.conbuildmat.2010.11.066
Google Scholar
[11]
M. Batayneh, I. Marie, I. Asi, Use of selected waste materials in concrete mixes, Waste Manage. 27 (2007) 1870-1876.
DOI: 10.1016/j.wasman.2006.07.026
Google Scholar
[12]
A. I. Al-Hadithi, N. N. Hilal, The possibility of enhancing some properties of self-compacting concrete by adding waste plastic fibers, J. Build. Eng. 8 (2016) 20-28.
DOI: 10.1016/j.jobe.2016.06.011
Google Scholar
[13]
L. A. Pereira De Oliveira, J. P. Castro-Gomes, Physical and mechanical behaviour of recycled PET fibre reinforced mortar, Constr. Build. Mater. 25 (2011) 1712-1717.
DOI: 10.1016/j.conbuildmat.2010.11.044
Google Scholar
[14]
K. Ramadevi, R. Manju, Experimental investigation on the properties of concrete with plastic PET (bottle) fibres as fine aggregates, J. Emerg. Technol. Adv. Eng. 2 (2012) 42-46.
Google Scholar
[15]
N. Saikia, J. De Brito, Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate, Constr. Build. Mater. 52 (2014) 236-244.
DOI: 10.1016/j.conbuildmat.2013.11.049
Google Scholar
[16]
R. H. F. Pelisser, R. K. O. Montedo, J. P. P. Gleize, H. Roman, Mechanical properties of recycled PET fibers in concrete, Mater. Res. 15(4) (2012) 679-686.
DOI: 10.1590/s1516-14392012005000088
Google Scholar
[17]
M. A. A. Aldahdooh, N. Muhamad Bunnori, M. A. Megat Johari, Development of green ultra-high performance fiber reinforced concrete containing ultrafine palm oil fuel ash, Constr. Build. Mater. 48 (2013) 379-389.
DOI: 10.1016/j.conbuildmat.2013.07.007
Google Scholar
[18]
B. A. Tayeh, B. H. Abu Bakar, M. A. Megat Johari, Y. L. Voo, Mechanical and permeability properties of the interface between normal concrete substrate and ultra-high performance fiber concrete overlay, Constr. Build. Mater. 36 (2012) 538-548.
DOI: 10.1016/j.conbuildmat.2012.06.013
Google Scholar