Structure and Properties of Graphene Oxide Aerogels by Freeze-Drying Process

Article Preview

Abstract:

The structure and properties of graphene oxide aerogels (GOA), prepared by a modified Hummer’s method followed by a freezing-drying process in addition to a pre-oxidized procedure, were studied through FTIR, Raman, SEM and XDR techniques. FTIR results indicated the existence of -C-O, -C-OH and -C=O function groups on the GOA surface. Therefore, the D band intensity of GOA sample exhibited remarkable increasing in the Raman spectra compared with of graphite; it may be due to change the order-structure of graphite to disorder-structure of GOA. The diffractive peak for the graphite at 2θ of 26.5° vanishes instead the one around 10.0° occurred in the XRD pattern for the GOA supported that the structure and d-spacing changed seriously from graphite to GOA. The SEM images revealed that the micro-structure of graphene layer of GOA was wrinkler and softer than that of graphite, however, the former involved fewer lamellar layer appearance with wrinkles on the edges of the graphene. All the characterized evaluation confirmed that the graphite powder has been transformed into a GOA structure through the modified Hummers’ method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-82

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. N. Tang, C. Z. Liu, X. R. Chen, Y. Q. Deng, X. H. Chen, J. J. Shao, Q. H. Yang, Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes, Carbon. 146 (2019) 147-154.

DOI: 10.1016/j.carbon.2019.01.096

Google Scholar

[2] S. Korkmaz, I. A. Kariper, Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications, J. Energy Storage, 27 (2020) 101038.

DOI: 10.1016/j.est.2019.101038

Google Scholar

[3] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano. Lett. 8(3) (2008) 902-907.

DOI: 10.1021/nl0731872

Google Scholar

[4] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9-10) (2008) 351-355.

DOI: 10.1016/j.ssc.2008.02.024

Google Scholar

[5] C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Sci. 321(5887) (2008) 385-388.

DOI: 10.1126/science.1157996

Google Scholar

[6] B. C. Brodie, XIII. On the atomic weight of graphite, Philosophical Transactions of the Royal Society of London, 149 (1859) 249-259.

DOI: 10.1098/rstl.1859.0013

Google Scholar

[7] L. Staudenmaier, Verfahren zur darstellung der graphitsäure, Berichte der deutschen chemischen Gesellschaft, 31(2) (1898) 1481-1487.

DOI: 10.1002/cber.18980310237

Google Scholar

[8] W. S. Hummers Jr, R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(6) (1958) 1339.

DOI: 10.1021/ja01539a017

Google Scholar

[9] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4(8) (2010) 4806-4814.

DOI: 10.1021/nn1006368

Google Scholar

[10] J. He, H. Zhao, X. Li, D. Su, H. Ji, H. Yu, Z. Hu, Large-scale and ultra-low thermal conductivity of ZrO2 fibrofelt/ZrO2-SiO2 aerogels composites for thermal insulation, Ceramics Int. 44(8) (2018) 8742-8748.

DOI: 10.1016/j.ceramint.2018.01.089

Google Scholar

[11] F. Kim, J. Luo, R. Cruz-Silva, L. J. Cote, K. Sohn, J. Huang, Self‐propagating domino‐like reactions in oxidized graphite, Adv. Function Mater. 20(17) (2010) 2867-2873.

DOI: 10.1002/adfm.201000736

Google Scholar

[12] Z. Li, Y. Mi, X. Liu, S. Liu, S. Yang, J. Wang, Flexible graphene/MnO2 composite papers for supercapacitor electrodes, J. Mater. Chem. 21(38) (2011) 14706-14711.

DOI: 10.1039/c1jm11941a

Google Scholar

[13] K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett. 8(1) (2008) 36-41.

DOI: 10.1021/nl071822y

Google Scholar

[14] M. Mahmoudi, O. Akhavan, M. Ghavami, F. Rezaee, S. M. A. Ghiasi, Graphene oxide strongly inhibits amyloid beta fibrillation, Nanoscale, 4(23) (2012) 7322-7325.

DOI: 10.1039/c2nr31657a

Google Scholar