[1]
X. N. Tang, C. Z. Liu, X. R. Chen, Y. Q. Deng, X. H. Chen, J. J. Shao, Q. H. Yang, Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes, Carbon. 146 (2019) 147-154.
DOI: 10.1016/j.carbon.2019.01.096
Google Scholar
[2]
S. Korkmaz, I. A. Kariper, Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications, J. Energy Storage, 27 (2020) 101038.
DOI: 10.1016/j.est.2019.101038
Google Scholar
[3]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano. Lett. 8(3) (2008) 902-907.
DOI: 10.1021/nl0731872
Google Scholar
[4]
K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9-10) (2008) 351-355.
DOI: 10.1016/j.ssc.2008.02.024
Google Scholar
[5]
C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Sci. 321(5887) (2008) 385-388.
DOI: 10.1126/science.1157996
Google Scholar
[6]
B. C. Brodie, XIII. On the atomic weight of graphite, Philosophical Transactions of the Royal Society of London, 149 (1859) 249-259.
DOI: 10.1098/rstl.1859.0013
Google Scholar
[7]
L. Staudenmaier, Verfahren zur darstellung der graphitsäure, Berichte der deutschen chemischen Gesellschaft, 31(2) (1898) 1481-1487.
DOI: 10.1002/cber.18980310237
Google Scholar
[8]
W. S. Hummers Jr, R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(6) (1958) 1339.
DOI: 10.1021/ja01539a017
Google Scholar
[9]
D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, Improved synthesis of graphene oxide, ACS Nano, 4(8) (2010) 4806-4814.
DOI: 10.1021/nn1006368
Google Scholar
[10]
J. He, H. Zhao, X. Li, D. Su, H. Ji, H. Yu, Z. Hu, Large-scale and ultra-low thermal conductivity of ZrO2 fibrofelt/ZrO2-SiO2 aerogels composites for thermal insulation, Ceramics Int. 44(8) (2018) 8742-8748.
DOI: 10.1016/j.ceramint.2018.01.089
Google Scholar
[11]
F. Kim, J. Luo, R. Cruz-Silva, L. J. Cote, K. Sohn, J. Huang, Self‐propagating domino‐like reactions in oxidized graphite, Adv. Function Mater. 20(17) (2010) 2867-2873.
DOI: 10.1002/adfm.201000736
Google Scholar
[12]
Z. Li, Y. Mi, X. Liu, S. Liu, S. Yang, J. Wang, Flexible graphene/MnO2 composite papers for supercapacitor electrodes, J. Mater. Chem. 21(38) (2011) 14706-14711.
DOI: 10.1039/c1jm11941a
Google Scholar
[13]
K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett. 8(1) (2008) 36-41.
DOI: 10.1021/nl071822y
Google Scholar
[14]
M. Mahmoudi, O. Akhavan, M. Ghavami, F. Rezaee, S. M. A. Ghiasi, Graphene oxide strongly inhibits amyloid beta fibrillation, Nanoscale, 4(23) (2012) 7322-7325.
DOI: 10.1039/c2nr31657a
Google Scholar