Theoretical Studies of Au3+/0/- Clusters Using Density Funtional Theory

Article Preview

Abstract:

In this study, the PW91PW91 method with LANL2DZ level was carried out to settle the dispute about the most stable structure of Au3+/0/-. Molecular orbital analyses and Walsh diagram were adopted to rationalize our computational result about the ground state geometry of Au3+/0/-. Our results show that the most stable geometry of Au3 is bent structure (C2v) with bond angle 146.0°. The less stable structure is equilateral triangle structure (D3h) with relative energies of 1.74 eV. The D3h structure possesses multiplicity 4 while the C2v structure 2. In addition, the most stable geometry of Au3+ and Au3- are equilateral triangle structure (D3h) and linear structure (D∞h), respectively. The preference of geometric change can be rationalized simply by using Walsh diagram. Besides, the linear structure of Au3 is found to be transition states (TS) of inversion of B-Au3. The inversion barrier is estimated to be 0.04 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-98

Citation:

Online since:

September 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.-M. Yan, X. B. Zhang, T. Akita, M. Haruta, Q. Xu, One-Step Seeding Growth of Magnetically Recyclable Au@Co Core−Shell Nanoparticles: Highly Efficient Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane, J. American Chem. Soc. 132(15) (2010) 5326-5327.

DOI: 10.1021/ja910513h

Google Scholar

[2] R. J. H. Grisel, B. E. Nieuwenhuys, Selective Oxidation of CO, over Supported Au Catalysts, J. Catalysis, 199(1) (2001) 48-59.

DOI: 10.1006/jcat.2000.3121

Google Scholar

[3] N. Lopez, T. V. W. Janssens, B. S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J. K. Nørskov, On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation, J. Catalysis, 223(1) (2004) 232-235.

DOI: 10.1016/j.jcat.2004.01.001

Google Scholar

[4] S. Lal, S. E. Clare, N. J. Halas, Nanoshell-Enabled Photothermal Cancer Therapy: Impending Clinical Impact, Accounts Chem. Res. 41(12) (2008) 1842-1851.

DOI: 10.1021/ar800150g

Google Scholar

[5] Y. Wang, X. Xie, X. Wang, G. Ku, K. L. Gill, D. P. O'Neal, G. Stoica, L. V. Wang, Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain, Nano Lett. 4(9) (2004) 1689-1692.

DOI: 10.1021/nl049126a

Google Scholar

[6] T. Zhang, G. Lu, W. Li, J. Liu, L. Hou, P. Perriat, M. Martini, O. Tillement, Q. Gong, Optimally Designed Nanoshell and Matryoshka-Nanoshell as a Plasmonici-Enhanced Fluorescence Probe, J. Phys. Chem. C 116(15) (2012) 8804-8812.

DOI: 10.1021/jp2125944

Google Scholar

[7] J. Wang, G. Wang, J. Zhao, Density-functional study of Aun(n=2–20) clusters: Lowest-energy structures and electronic properties, Phys. Rev. B 66(3) (2002) 035418.

Google Scholar

[8] J. Li, X. Li, H. J. Zhai, L. S. Wang, Au20: A Tetrahedral Cluster, Sci. 299(5608) (2003) 864-867.

Google Scholar

[9] A. Corma, P. Concepción, M. Boronat, M. J. Sabater, J. Navas, M. J. Yacaman, E. Larios, A. Posadas, M. A. López-Quintela, D. Buceta, E. Mendoza, G. Guilera, A. Mayoral, Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity, Nat. Chem. 5(9) (2013) 775-781.

DOI: 10.1038/nchem.1721

Google Scholar

[10] O. Warshavski, L. Minai, G. Bisker, D. Yelin, Effect of Single Femtosecond Pulses on Gold Nanoparticles, J. Phys. Chem. C 115(10) (2011) 3910-3917.

DOI: 10.1021/jp110348x

Google Scholar

[11] S. Goel, A. E. Masunov, Density functional theory study of small nickel clusters, J. Molecular Model. 18(2) (2011) 783-790.

DOI: 10.1007/s00894-011-1100-x

Google Scholar

[12] S. Heiles, A. J. Logsdail, R. Schafer, R. L. Johnston, Dopant-induced 2D-3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au-Ag nanoalloys, Nanoscale, 4(4) (2012) 1109-1115.

DOI: 10.1039/c1nr11053e

Google Scholar

[13] G. Bravo-Pérez, I. L. Garzión, O. Novaro, Ab initio study of small gold clusters, J. Molecular Struct. THEOCHEM, 493(1-3) (1999) 225-231.

DOI: 10.1016/s0166-1280(99)00243-2

Google Scholar

[14] D. M. Benoit, B. Madebene, I. Ulusoy, L. Mancera, Y. Scribano, S. Chulkov, Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces, Beilstein J. Nanotechnol. 2 (2011) 427-447.

DOI: 10.3762/bjnano.2.48

Google Scholar

[15] M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision A.02, Gaussian. Inc., Wallingford, CT 200 (2009).

Google Scholar

[16] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11) (1992) 6671-6687.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[17] S. Chiodo, N. Russo, E. Sicilia, LANL2DZ basis sets recontracted in the framework of density functional theory, J. Chem. Phys. 125(10) (2006) 104107.

DOI: 10.1063/1.2345197

Google Scholar