[1]
M. Petriccione, F. Mastrobuoni, M. S. Pasquariello, L. Zampella, Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage, Foods. 4 (2015) 501-523.
DOI: 10.3390/foods4040501
Google Scholar
[2]
C. Han, J. Zuo, Q. Wang, X. Lijing, Z. Baiqiang, W. Zhaosheng, D. Haizhou, G. Lipu, Effects of chitosan coating on postharvest quality and shelf life of sponge gourd (Luffa cylindrica) during storage, Sci. Hortic. 166 (2014) 1-8.
DOI: 10.1016/j.scienta.2013.09.007
Google Scholar
[3]
M. A. Mustafa, A. Ali, S. Manickam, Y. Siddiqui, Ultrasound-assisted chitosan-surfactant nanostructure assemblies: towards maintaining postharvest quality of tomatoes, Food Bioprocess Tech. 7 (2014) 2102-2111.
DOI: 10.1007/s11947-013-1173-x
Google Scholar
[4]
B. Meindrawana, N.E. Suyatma, A. A, Wardana, V. Y. Pamela, Nanocomposite coating based on carrageenan and ZnO nanoparticles to maintain the storage quality of mango, Food Packag. Shelf Life. 18 (2018) 140-146.
DOI: 10.1016/j.fpsl.2018.10.006
Google Scholar
[5]
A. A. Wardana, N. E. Suyatma, T. R. Muchtadi, S. Yuliani, Influence of ZnO nanoparticles and stearic acid on physical, mechanical and structural properties of cassava starch-based bionanocomposite edible films, Int. Food Res. J. 25 (2018) 1837-1844.
Google Scholar
[6]
S. Yuliani, A. A. Wardana, B. Meindrawan, N. E. Suyatma, T. R. Muchtadi, Nanocomposite edible coating from cassava starch, stearic acid and ZnO nanoparticles to maintain quality of fresh-cut mango cv. Arumanis, Annals of The University Dunarea De Jos of Galati. Fascicle VI. 42 (2018) 49-58.
DOI: 10.1016/j.fpsl.2018.10.006
Google Scholar
[7]
M. Lavinia, S. N. Hibaturrahman, H. Harinata, A. A. Wardana, Antimicrobial activity and application of nanocomposite coating from chitosan and ZnO nanoparticle to inhibit microbial growth on fresh-cut papaya, Food Res. 4 (2020) 307-311.
DOI: 10.26656/fr.2017.4(2).255
Google Scholar
[8]
A. Rao, M. Schoenenberger, E. Gnecco, Th. Glatzel, E. Meyer, Characterization of nanoparticles using Atomic Force Microscopy, J. Phys. Conf. Ser. 61 (2007) 971-976.
DOI: 10.1088/1742-6596/61/1/192
Google Scholar
[9]
International Standard ISO13321 Methods for Determination of Particle Size Distribution Part 8: Photon Correlation Spectroscopy, International Organisation for Standardisation (ISO) (1996).
Google Scholar
[10]
International Standard ISO22412 Particle Size Analysis - Dynamic Light Scattering, International Organisation for Standardisation (ISO) (2008).
Google Scholar
[11]
B. M. Patyl, T. C. Tranath, Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis, Int J Mycobacteriol. 5 (2016) 197-204.
DOI: 10.1016/j.ijmyco.2016.03.004
Google Scholar
[12]
M. M. AbdElhady, Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric, Int. J Carbohydr Chem. 2012 (2012) 1-6.
DOI: 10.1155/2012/840591
Google Scholar
[13]
P. S. P. Herrmann, C. M. P. Yoshida, A. T. Antunes, J. A. Marcondes, Surface evaluation of whey protein films by atomic force microscopy and water vapour permeability analysis, Pack Technol Sci. 17 (2004) 267-273.
DOI: 10.1002/pts.662
Google Scholar
[14]
D. de Britto, O. B. G. Assis, Hydrophilic and morphological aspects of films based on quaternary salts of chitosan for edible applications, Pack. Technol. Sci.23 (2010) 111–119.
DOI: 10.1002/pts.884
Google Scholar
[15]
G. Zuo, X. Song, F. Chen, Z. Shen, Physical and structural characterization of edible bilayer films made with zein and corn-wheat starch, J Saudi Soc Agri Sci. 18 (2019) 324-331.
DOI: 10.1016/j.jssas.2017.09.005
Google Scholar