Effect of Annealing on Proton Conductivity of Aquivion-Like Proton-Exchange Membrane

Article Preview

Abstract:

Proton-conducting membranes were fabricated from a new short-side chain ionomer Inion (Russian analogue of Aquivion) by solution casting method. A series of temperature treatment experiments was conducted to show that annealing of Inion membranes at the temperature range from 160 °C to 170 °C leads to a significant increase of specific proton conductivity to values even higher than those of commercial membrane Nafion NR212. An explanation of this fact can be given by considering the membranes’ proton transport mechanism and water behavior models in nanopores. Matching the proton conductivity mechanism of the membranes, which is realized in nanostructured channels with the diameter of about several nanometers according to the Grotthuss proton hopping mechanism, and the model of water and ice states in nanopores leads to the comprehensive understanding for the further optimization of the membranes to achieve high transport characteristic. For example, it can be improved by increasing the number of side-chain branches of the polymer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

367-374

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E4tech, Fuel Cell Industry Review (2019).

Google Scholar

[2] Y. Wang, D. Diaz, K. Chen, Z. Wang, X. Adroher. Materials, technological status, and fundamentals of PEM fuel cells, Materials Today. 32 (2020) 178-203.

DOI: 10.1016/j.mattod.2019.06.005

Google Scholar

[3] S.I. Kozlov, V.N. Fateev, Fuel cells - promising chemical sources of electrical energy, Alternative fuel vehicles. 2 (2014) 7-23.

Google Scholar

[4] Yu.A. Dobrovol'skii, E.V. Volkov, A.V. Pisareva, Yu.A. Fedotov, D.Yu Likhachev, A. L. Rusanov, Proton-Exchange Membranes for Hydrogen-Air Fuel Cells, Russian Journal of General Chemistry. 77 (2007) 766-777.

DOI: 10.1134/s1070363207040378

Google Scholar

[5] L. Carrette, K.A. Friedric, U. Stimming, Fuel cells - fundamentals and applications, Fuel Cells. 1 (2001) 5-39.

DOI: 10.1002/1615-6854(200105)1:1<5::aid-fuce5>3.0.co;2-g

Google Scholar

[6] A. Kraytserg, Ya. Ein-Eli, Energy & Fuels, 28 (2014) 7303-7330.

Google Scholar

[7] F. Barbir, ed. by N, Sammes, PEM Fuel Cells, Springer London, London, (2006) 27-51.

Google Scholar

[8] Information on http://www.solvay.com/en/markets-and-products/featured-products/ Aquivion.html.

Google Scholar

[9] J. Li, M. Pan, H. Tang, Understanding short-side-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells, RSC Adv. 4 (2014) 3944-3965.

DOI: 10.1039/c3ra43735c

Google Scholar

[10] S.S. Ivanchev, M.R. Tarasevich, V.A. Bogdanovskaya, O.V. Korchagin, E.V. Burkovskii, O.N. Primachenko, V.S. Likhomanov, Performance of the Hydrogen-Air Fuel Cell with a Russian Analogue of the Aquivion Solid Polymer Electrolyte, Physical Chemestry. 464 (2015) 227-230.

DOI: 10.1134/s0012501615100012

Google Scholar

[11] J.C. Dyre, Universality of ac conduction in disordered solids, Review of Modern Physics. 72 (2000) 873-919.

DOI: 10.1103/revmodphys.72.873

Google Scholar

[12] V.V. Sinitsyn, A.I. Baranov, Compencation low and thermodynamics parameters of protonic conductivity in MenHm(AO4)p crystals, Ionics. 2 (1996) 478-484.

DOI: 10.1007/bf02375831

Google Scholar

[13] C. Colosi, M. Costantini, A. Barbetta, C. Cametti, M. Dentini M., Anomalous Debye-like dielectric relaxation of water in micro-sized confined polymeric systems, Phys. Chem. Chem. Phys. 15 (2013) 20153-20160.

DOI: 10.1039/c3cp52902a

Google Scholar

[14] M. Kinka, J. Banys, J. Macutkevic, A. Meskauskas, Conductivity of nanostructured mesoporous MCM-41 molecular sieve materials, Electrochimica Acta. 51 (2006) 6203-6206.

DOI: 10.1016/j.electacta.2006.01.069

Google Scholar

[15] X. Ling, M. Bonn, K.F. Domke, S.H. Parekh, Correlated interfacial water transportand proton conductivity in perfluorosulfonic acid membranes, Proc. Natl. Acad. Sci. USA. 116 (2019) 8715-8720.

DOI: 10.1073/pnas.1817470116

Google Scholar

[16] J.E. Thomaz, C.M. Lawler, M.D. Fayer, Proton Transfer in Perfluorosulfonic Acid Fuel Cell Membranes with Differing Pendant Chains and Equivalent Weights, J. Phys. Chem. B. 121 (2017) 4544-4553.

DOI: 10.1021/acs.jpcb.7b01764

Google Scholar

[17] Fr. de los Santos, F. Giancarlo, Relations between the diffusion anomaly and cooperative rearranging regions in a hydrophobically nanoconfined water monolayer, Phys. Rev. 85 (2012) 010602-010604.

DOI: 10.1103/physreve.85.010602

Google Scholar

[18] M.I. Ryzhkin, I.A. Ryzhkin, V.V. Sinitsyn, A.V. Klyuev, Theory of quasi-liquid surface layer, JETPh Lett. 106 (2017) 760-764.

DOI: 10.1134/s0021364017230114

Google Scholar

[19] M.I. Ryzhkin, I.A. Ryzhkin, A.M. Kashin, E.A. Galitskaya, V.V. Sinitsyn, Proton conductivity in mesiporous materials, JETP Lett. 108 (2018) 596-600.

DOI: 10.1134/s0021364018210130

Google Scholar

[20] M.I. Ryzhkin, A.V. Klyuev, V.V. Sinitsyn, I.A. Ryzhkin, Liquid state of hydrogen bond, JETP Lett. 104 (2016) 248-252.

DOI: 10.1134/s0021364016160013

Google Scholar

[21] I.A. Ryzhkin, M.I. Ryzhkin, A.M. Kashin, E.A. Galitskaya, V.V. Sinitsyn, High proton conductivity state of water in nanoporous materials, Europhysics Letters. 126 (2019) 36003-36010.

DOI: 10.1209/0295-5075/126/36003

Google Scholar